
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ROBOT LOCALIZATION USING VISUAL IMAGE MAPPING 
 
 

THESIS 
 
 

Carrie D. Crews, First Lieutenant, USAF 
 

AFIT/GCS/ENG/06-03 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



  

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the U.S. 

Government. 



  

AFIT/GCS/ENG/06-03 

 

ROBOT LOCALIZATION USING VISUAL IMAGE MAPPING 
 
 

THESIS 

 
Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

 

 

Carrie D. Crews, BS 

First Lieutenant, USAF 

 

March 2006 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

 

AFIT/GCS/ENG/06-03 

 

ROBOT LOCALIZATION USING VISUAL IMAGE MAPPING 
 
 

 
 

Carrie D. Crews, BS 

First Lieutenant, USAF 

 
 

 
 
 
 
 
 
 
 
Approved: 
 
 
 
 
____________________________________ ________ 
Dr. Gilbert Peterson (Chairman) Date 
 
____________________________________ ________ 
Dr. John Raquet (Member)  Date 

 
____________________________________ ________ 
Andrew Learn, Maj, USAF (Member)  Date 
 

 
 
 



 iv

Acknowledgments 

 I would like to give thanks to God for blessing me with a group of people integral 

to my successful completion of this work.  First, my family is the cornerstone of my 

strength and sanity and I am ever so grateful to have them to go home to each day.   

 Secondly, I extend my profound gratitude to Major Theresa Jamison for being my 

friend, mentor, and sister in spirit. I am a better person having known her. 

 Lastly, I can’t express the impact my advisor, professors, and fellow students 

have had on my experience here.  I fully appreciate every second I spent in their 

company. 

  

 
         Carrie D. Crews 

 

 

 

 

 

 

 

 

 

 



 

 v

AFIT/GCS/ENG/06-03 

Abstract 

 One critical step in providing the Air Force the capability to explore unknown 

environments is for an autonomous agent to determine its location.  The calculation of the 

robot’s pose is an optimization problem making use of the robot’s internal navigation 

sensors and data fusion of range sensor readings in calculating the most likely pose.  This 

data fusion process requires the simultaneous generation of a map which the autonomous 

vehicle can then use for obstacle avoidance, communication with other agents in the same 

environment, and target location.  Our solution entails mounting a Class 1 laser to an 

ERS-7 AIBO.  The laser projects a horizontal line on obstacles in the AIBO camera’s 

field of view.  Range readings are determined by capturing and processing multiple 

image frames, resolving the laser line to the horizon, and extracting distance information 

to each obstacle.  This range data is then used in conjunction with mapping and 

localization software to accurately navigate the AIBO. 
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 ROBOT LOCALIZATION USING VISUAL IMAGE MAPPING 

 

I. Introduction 

 The ability for a robot to localize itself is a critical step in creating a fully 

autonomous robot.  Essential to localization is the relationship between a map of the 

robot’s environment and its sensor, from which the robot is able to localize (determine its 

location in the environment).    Localization and mapping requires two accurate pieces of 

information: sensor information which is interpreted as the locations of objects in the 

robot’s environment and a mathematical representation of the motion of the robot in 

question.  Although both sensor and motion models are important, the motion model 

must be as accurate as possible, since it provides correct robot estimation of its current 

location in the world. 

 This research focuses on studying the localization of a quadruped robot while 

creating and correcting a physical map derived solely from information provided by the 

robot’s vision system.   

1.1 Rationale 

The evolution of robotics in commercial service provides a new facility for 

exploring environments without risking the loss of human life.  A well-known and 

publicized application is the remote controlled vehicle used by bomb squads [23].  This 

application easily extends to use in military missions [23].  As the terrorist community 

grows more fearless and ever stealthier, such vehicles provide the military with the means 
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of exploring environments too hazardous for human entry.  The enemies of this country 

will go to any necessary means to hide themselves and their weapons.  This includes 

“booby trapping” buildings including schools, hospitals, and office buildings.  The 

robot’s ability to navigate these types of environments autonomously significantly 

reduces the loss of life often suffered during human exploration.  The legged robots have 

two advantages over wheeled or tread robots—1.) the ability to explore environments 

with rougher terrains 2.) the ability to fit into smaller enclosures.   

  This research envisions sending a robot with a striping laser into an unknown 

environment to collect data. The striping laser provides a more accurate sensor reading 

than traditional sonar sensors that have a 30° cone of possible locations for each sensor 

reading.  The striping laser reduces the noise the 3D cone to a 2D range of possibilities.  

The laser is also small and lightweight as not to add excessive proportion and weight to 

the robot.  As the robot navigates the rooms or buildings, it sends its images to a source 

that processes the information and extracts physical features from the environment. 

1.2 Problem Statement 

Localization and mapping solutions are successful under constraints of 

specialized environments using various types of object detection algorithms.  The 

problem becomes more complex when applying these solutions to dynamic 

environments.  The concept of using vision as a sensor for object detection centers on 

being able to detect patterns in the image corresponding with known features in the 

environment.  The goal of this research is to overcome the hurdle of dynamic 

environments and stray away from the “known” by using components common to all 
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images (introducing one such component using a striping laser) to detect features of the 

unknown environment.  Utilizing this information with a Monte Carlo localization 

technique allows the robot to build a physical map of “where” it has been and accurately 

estimate “where” it is currently.   

1.3 Approach 

 We address this problem by representing one image collected from a host’s 

camera as a single “scan” from a generic sensor. Two representations of each image are 

processed--segmented and raw.  The segmented image is used to derive the location of 

the laser line in the image.  The horizon line of the image is estimated and projected onto 

the raw image.  Once the locations of these two lines are located, they are moved to 

mirror their true positions in the real world.  This process requires the horizon’s rotation 

angle to be determined, then rotating both lines by the negative of that angle.  On order to 

compensate for the nodding of the head, the laser line is translated to mirror the distance 

between the horizon and the center of the image.  The distance information provided by 

comparing the laser line and horizon line in each image provides us with information 

from which we build a local map. The map consists of two vital pieces of information--

the robot’s position in the environment and the distances to obstacles reported by the 

sensors.  The distance measurements are calculated relative to the base of the robot, 

compensating for pan motion of the head as well as the geometric relationship between 

the laser line pixels and the center of the robot.  The mapping software utilizes this 

information to determine the location of the obstacle in its grid-based world. The robot’s 

position is derived from the distance the robot has traveled since its last image was 
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captured and processed and the angular velocity the robot is traveling, from which 

rectangular coordinates are derived. The location on the mapping software’s grid is based 

on the accumulated rectangular coordinates and the direction the robot was last facing.   

The local maps are calculated and maximized separately, first forward during mapping, 

then backward over previously constructed local map.  The global map is corrected as a 

result of the local maps being reconstructed based on the maximized pose. 

 The theory behind the vision component of this application is the traditional 

landmark detection using segmented vision.  In previous research, the landmarks are 

distinguished by color and/or pattern and the images are segmented, extracting these 

colored features[12, 20, 22, 30, 35].  The robot’s pose is estimated by identifying the 

landmarks captured in the image.   As an alternative, we replace the color-coded 

landmarks with a laser line, projected into the image to define the shape and orientation 

of the objects, versus capturing and processing the entire detected object.    Since the 

laser line segments are not natural to the image, but introduced by the laser-mounted 

robot, the dependency on a specific environment is reduced in this research.  

Additionally, the estimated horizon of the image is also based on the robot stance instead 

of the traditional technique of using sets of vanishing lines extracted from the image.  As 

a result, our local maps can be built in various environments (light-dependent) since we 

don’t depend on the natural image itself to detect obstacles, but instead use the image as a 

plane upon which these two lines in are projected in order to measure the distance 

between them.  This distance measure is intended to provide the same information as any 

other distance feedback sensor. 
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1.4 Thesis Outline 

 Chapter II presents a history of different localization solutions implemented with 

varying level of success.  This includes three implemented algorithms: Kalman Filter, 

grid-based Markov, and Monte Carlo localizations, the latter being the most frequently 

applied to localizing the AIBO mobile robot.  Additionally, the simultaneous localization 

and mapping (SLAM) problem is presented with a brief discussion of the solution used in 

this research. Although these solutions are widely used and modified, the implementation 

of this research included two known variables: one, it is being applied to the AIBO robot, 

and two, it is using the AIBO’s vision system as the primary sensor.  Hence, Chapter II 

also reviews several systems which localize the AIBO using modified versions of the 

Monte Carlo localization algorithm and the combination of Markov localization with 

Kalman filtering.  These extended versions of the original solutions utilized vision for the 

sensor model.  Each of the cited solutions is accompanied by the challenges associated 

the algorithms as well as proposed modifications to improve performance. 

 Due to the unique nature of the laser and vision distance extraction technique, 

three demonstrations of collaboratively using vision with a Class 1 striping laser are 

reviewed.   

 Chapter III documents the theory behind the steps necessary to process images, 

estimate the horizon, extract the laser line, and develop a sensor and motion model for the 

AIBO robot.  The actual methods used in implementing the theoretical concepts are also 

covered in the chapter. For each successive step, we describe our prevailing assumptions 
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and compromises made to accommodate constraints of reduced complexity, computation 

synchronization, and eventual real-time implementation.   

 Chapter IV describes the analysis of the SLAM solution using the information and 

the techniques described in Chapter III.  Testing maps without localization which 

determine the accuracy of both the object detection using the horizon/laser line distance 

correspondence and pose estimation are developed through a series of physical tests and 

calibrations.  The specific nature of these calibrations is described in Chapter III.  Once 

familiar with the impact of the sensor model and pose estimation on the accuracy of the 

mapping computations and resigned to a threshold of inaccuracy, the results from the 

mapping algorithm are collected and analyzed.  For the rest of Chapter IV, we analyze 

the localization calculations and determine each parameters’ influence on the outcome 

and make adjustments which improve accuracy.   

 Finally, Chapter V reviews the estimates made throughout the implementation 

discussed in Chapter III.  For each estimate, reasoning is provided as well as possible 

alternative processes for making the estimation that may result in improved accuracy.  

The final section of the chapter provides a brief overview of the conclusion that were 

drawn from the research, extensions for future development, and recommendations to 

improve this specific research topic.  
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,II. Literature Review 

This chapter presents related research addressing the problem of localization with 

mobile robots. The specific interest of this research concerns implementing a localization 

solution, using images generated from the onboard camera on an AIBO robot mounted 

with a split-beam infrared laser. 

Many techniques focus on allowing mobile robots to move about their 

environment autonomously. Autonomous navigation relies on the interpretation of 

information from the robot’s sensors which, is filtered and produces data used in 

determining the current position of the robot in its environment. There exist several 

approaches in proposing solutions to the localization problem.  Given that sensor data is 

far from absolute and not necessarily reliable, a need remains for estimation when using 

this data to calculate the robot’s pose explaining why the most successful localization 

solutions are probabilistic in nature. A brief review of the localization problem and three 

popular solutions--Monte Carlo localization, grid-based Markov localization, and 

localization using the Kalman filter--are included in the following sections. Many of 

these techniques depend on having a good map of the physical environment.  In dynamic 

environments, where a map isn’t available, it is possible to build the map using 

simultaneous localization and mapping (SLAM).  This chapter includes a section devoted 

to research on this subject. 

 This research intends to utilize an AIBO as its agent which moves about and 

gathers images, providing information about the environment from which SLAM software 

builds a map. There are many research projects which involve localizing an AIBO using 
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vision.  Subsequent sections introduce several such localization implementations, using 

the AIBO’s camera, or its camera coupled with its laser range finder, to provide sensor 

data.   

The final set of concepts this chapter presents are those involving the use of a 

striping laser.  In these publications, lasers are used for determining distance by 

triangulating between the laser and a camera, aligning images, and for performing camera 

calibrations.   

2.1 Localization 

Localization is a fundamental capability requirement to make significant headway 

in the development of a pure autonomous robot. A map of its environment, a history of its 

sensory perceptions, and its recently executed actions are the three categories of 

information robots required to deduce their current position in the environment (pose). 

This deduction is broken down into two key problem areas [27]: global position 

estimation (GPE) and local position tracking (LPT). The first is the most complex, since 

the robot’s position must be determined without any a priori pose information. In 

contrast, the LPT problem begins as soon as the robot has localized itself within its map, 

keeping track of the robot’s position as it moves over time. The common thread among 

the solutions is that the state of the robot is a vector consisting of the (x,y) position and 

orientation, θ , at a any given time T.  

Tyx ],,[ θ=x      (1) 

The estimation of this state is “an instance of Bayesian filtering problem where we are 

interested in constructing the posterior density.” [27] 
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( )k
k Zp |x       (2) 

Where kZ , the set of all measurements, is collected by the sensor up to the kth sample 

}..1,{ kizk =  and kx represents one of all possible states. The decision of how to represent 

the distribution (1) is the primary factor making each localization solution unique. As 

much as these solutions are diverse, they share a common recursive formula consisting of 

a Prediction Phase and an Update Phase used in computing the posterior density at each 

time step. Each phase of the computation uses two mathematical models in deriving an 

approximated representation of the robot’s state. 

 The Prediction Phase uses a motion model in predicting the current position of the 

robot, represented as this predictive probability distribution function: 

)|( 1−k
k Zp x      (3) 

This model makes use of the Markov assumption, in that the state of the robot is only 

dependent on its previous state ( 1−kx ) and some known control input (u), 

),|( 11 −− kkkp uxx     (4) 

This equation denotes the probability of our current position, given our previous position 

and last control input, allowing the computation of the corresponding predictive 

probability using integration: 

∫ −
−

−−−
− = 1

1
111

1 )|(),|()|( k
k

kkkk
k

k dZppZp xxuxxx    (5) 

This phase ultimately computes the probability that the estimated pose is accurate by 

applying the motion model to the estimate. 

 The Update Phase uses the information from the sensors in a measurement model 
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)|( kkp xz      (6) 

 representing the likelihood that kz  is observed given its current pose kx . Using this 

model, the posterior density is calculated using Bayes theorem: 

)|(
)|()|()|( 1

1

−

−

= k
k

k
kkkk

k Zp
ZppZp

z
xxzx     (7) 

This two-phase process is recursively performed over previous states until it reaches the 

initial state, which is handled differently for the GPE and LPT problems. An important 

fact to remember is that there is no model that is perfect, especially when modeling a 

system using information from sensors. Once again, sensors do not necessarily provide 

accurate or complete data from which to build these system representations. The 

following section presents a few solutions to the localization problem. 

2.2 Localization Algorithms 

There are three popular solutions to the localization problem having various levels 

of implementation success: Kalman-filter based, Markov grid-based, and Monte Carlo 

localization.   Each solution is developed in hopes of mitigating sensor model and motion 

model inaccuracies. 

 2.2.1 Kalman Filter   

 The first and most straightforward approach at solving the localization problem is 

using pure Kalman filters. The Kalman filter is a recursive data processing algorithm [16] 

which processes all measurements provided to it, producing an estimate of the value of 

the variable of interest. The filter uses three pieces of information in calculating this 

estimate: knowledge of the system and measurement device dynamics, statistical 
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description of the system noises, measurement errors, and uncertainty in the dynamics 

models, and any available information about the initial conditions of the variable of 

interest [16]. In the case of localization, both the motion and measurement (sensor) 

models are Gaussian distributions. The Kalman filter is composed of two components, the 

motion model [22]: 

   (9) 

which is used in the Prediction Phase to estimate the current position based on its 

previous position, and the measurement model: 

  (10) 

The sensor model is used during the pose update phase for refining the current pose using 

sensor data. When these components are used with the calculations to compute the 

Minimum Mean Square Error (MMSE) estimate of the state and covariance, the Kalman 

filter’s resulting representation of the localization motion model [22] is: 

State 
transition 
function 

Control input 
function 

Noise input 

State Control 
input 

Process noise 

ttttttt wGuBxFx ++=+1

State Sensor reading Sensor noise with 
covariance R

Sensor function 

1111 ++++ += tttt nxHz
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and the sensor model is: 

 - Compute expected value of sensor reading 

 - Compute the difference between expected and “true”  

 -Compute covariance of sensor reading 

 - Compute the Kalman Gain (how much to correct est.) 

 - Multiply residual times gain to correct state estimate 

 - Uncertainty estimate SHRINKS 

 

It is noteworthy to highlight the linear nature of these equations. When applied to mobile 

robots, the linearity of the filter introduces a limitation in that mobile robot dynamics are 

not linear. Hence, the nonlinear system of a robot must be modeled with a linear process 

model by making some small-angle assumptions.  The linearization of the system results 

in an increase in state error residual since it is not the best estimate.  The weakness of 

using pure Kalman filters in localization is that only one hypothesis can be represented if 

the filter’s optimality is to be maintained. Additionally, the filter is not capable of 

handling 1) non-Gaussian motion and sensor models, 2) multi-modal densities of global 

localization, and 3) is unable to recover from local tracking failures. Most of these 

 - State estimate is updated from system dynamics 

 - Uncertainty estimate GROWS 

tttt
T

ttttttt

tttttt

t
T

tttt

t
T

ttttt

ttt

tttt

PHSHPPP

rKxx
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RHPHS

zzr
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=
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=

Table 1: Kalman Filter Equations 
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weaknesses can be corrected with some extensions of the Kalman filter, but they cause 

the solution to be less optimal [22,19].    

 Although there is loss optimality in applying an extension of the Kalman Filter 

[EKF] to localization, it has been successfully used to build a map of the robot’s 

environment while localizing. In [20], a feature-based concurrent mapping and 

localization, also known as SLAM, algorithm is introduced. As localization solutions 

need to be applicable to dynamic environments, the proposed solution performs SLAM 

without the a priori knowledge of a global map or known robot location.  The technique 

presented in [20] initializes a local map relative to the current vehicle location upon 

initialization of a motion.  At each step of the motion, the EKF prediction and updating 

algorithm is used to estimate the vehicle’s current location and location of environmental 

features using the sensor and motion models described in the previous text. Other than 

avoiding optimistic estimations by using the EKF, the only additional component to 

consider in using Kalman Filters for mapping is developing a hypothesis associating the 

sensor return with its corresponding feature in the map.  The application of a Hough 

transform along the vehicle locations of a local map gives a hypothesis 

],...,,[ 21 st jjjH =  associating each sonar return i, at instant t with i=1,..s, with its 

corresponding feature 
ij

F [20].  The theoretic distance from i to 
ij

F is a function of the 

vehicle and feature location, 
iijh , found in the map state vector.  This resulting distance 

measure is given as 

tttt wxhz += )(  
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where tw is measurement noise.  Linearization around the current map estimate yields: 

)ˆ(

1|1|

1|
|

)ˆ()ˆ(

−∂
∂

=

−+≅ −−

tt
t

t
t

tttttttt

xx
h

H

xxHxhz
 

which is used to obtain a new estimation of the state using the standard EKF update 

equations listed in Table 1.  Characteristically, the resulting local maps are independent 

of any prior knowledge and only depend on the odometry readings and sensory data 

collected during the steps and the data association hypothesis [20].  As they become 

available, each local map is added to the stochastic global map.  Compatible features 

found in both the local and global maps are gathered and used to update the global map.     

 2.2.2 Markov Model 

The second approach to solving the localization problem is the Markov method. 

This approach is directed at the global localization problem by maintaining a probability 

density over the space of all locations of a robot in its environment in order to globally 

estimate the position of the robot in its environment. One variant of the Markov method 

[7] uses a fine-grained and metric discretization of the state space, providing more 

accurate position estimates and the ability to incorporate raw, unfiltered, sensory input. It 

also addresses the general assumption that the robot’s environment is static, making it 

vulnerable to failure in dynamic environments. This vulnerability is overcome by only 

updating the probability density with measurements produced by objects that are very 

likely to be contained in the robot’s map. The Markov model addresses the limitation of 

only maintaining a single hypothesis as found with the Kalman filter approach by 
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maintaining a probability distribution over the space of all such hypotheses. In this 

approach, the sensor data tz  can be either camera or odometry readings ( 10 ,..., −Tdd ) , 

and the constant  

),...|(
1

10 −

=
Tt

T ddzP
α

 

is independent of the random variable corresponding to the true location at time t( TL ). 

The actual location of the robot is not known, but can be represented as a probability, 

computed as 

)()|()( 1−= T
kkTTk pzPxp xxα ,   (11) 

when the most recent data received is a sensor measurement, or 

∫ ′= − ldpxaPxp T
kT

T
k

T
k )(),|()( 1xx ,   (12) 

where the data is an odometry measurement. This belief equation computes the 

probability distribution )( T
kxp of the possibility that its location at time T is kx . The 

equation denotes the sensor measurement as z and odometry reading by a. In this 

representation, the motion model is denoted by the ),|( 1−tt aP xx  while the perception 

model is denoted as )|( xzP . Since this belief is most often approximated via a fine-

grained grid, it is able to represent multi-modal distributions, unlike its Kalman filter 

counterpart. It also eliminates the need to use landmarks to estimate the position of the 

robot, thus allowing the raw sensor data to be incorporated into the belief update. Unlike 

most other Markov-based algorithms, the set of distances used to compute )|( xzP only 
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includes the distance to the closest obstacle in the direction of that sensor, reducing 

computational complexity for real-time implementation.   

 

 2.2.3 Monte Carlo Localization  

 The final solution presented is the Monte Carlo Localization method. As noted in 

the previous discussion, each approach differs in the chosen representation of the 

probability densities. In this method [27], the density function )|( k
k Zp x  is not directly 

described, but represented using a set of random samples ( }..1;{ NisS i
kk == ) taken 

from )|( k
k Zp x . Such methodology is taken from earlier work done on Bayesian filtering 

with particle-based density representation and applied in this approach by using Monte 

Carlo methods to update the probability density. The samples approximately reconstruct 

the probability density, and then the sample set kS is recursively computed at each time 

step k. A general particle filter such as the bootstrap or Monte Carlo filter can be used to 

perform this recursive computation. This algorithm also prescribes to the Prediction and 

Update Phase process. In the Prediction Phase, the motion model is applied to each 

sample i
ks 1−  in the set of previously computed samples 1−kS  by sampling )|( 1,1

i
kkk sap −−x  

resulting in a new sample i
ks′  as a member of the new set kS ′  that approximates a random 

sample from )|( 1−k
k Zp x .  At this point, there has been no sensor data, kz  incorporated 

into this approximation, which leads us to the Update Phase. Here, the measurement 

kz and the (weight) likelihood of the each sample in kS ′  given the sensor 
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measurement )|( i
kk

i
k spm ′= z  are taken into consideration in the obtaining a new kS by 

getting one sample j
ks  from the weighted set },{ i

k
i

k ms′ . By resampling,  i
ks′   has a high 

likelihood associated with it, so kS  approximates a sample from )|( k
k Zp x . These 

phases are performed recursively until time k=0 is reached. Like the Markov approach, 

the Monte Carlo method is successful in overcoming the single-modal weakness of the 

Kalman filter by representing multi-modal distributions which is key to global 

localization in the robot’s world. Meanwhile, it uses far less memory than the Markov 

grid-based approach and is more accurate in its approximation. 

 The solutions presented above are algorithms addressing localization problems for 

mobile robots, implemented on different robots with varying levels of success. The next 

section of this paper addresses localization solutions implemented on the particular robot 

of interest in this research, the AIBO.  

 

 2.2.2 AIBO Specific Localization Implementations   

 The predominant work in the area of localization with the AIBO robot consists of 

directly targeting requirements for the RoboCup Quadruped League competition.  Most 

competing teams implement the Monte Carlo Localization algorithm on the AIBO, 

utilizing the camera, infrared laser, or a combination of both for collecting sensor data.  

The tournament takes place in a specialized environment, a 280 cm x 180 cm playing 

field.  The images are used to locate specific landmarks (goals, markers, and flags) and 

use their dimensions and known locations to estimate distance to them [31].  In other 

applications, the same color-dependent concepts are used with the exception of extracting 
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edges of the landmarks instead of processing the entire object [21]. The techniques for 

processing the images for distance data all have one common thread--they are dependent 

on the static environment and color-coded features with known locations upon which 

they derive pose.   In addition to being constrained to the field, AIBO-specific 

localization methods are limited by the AIBO’s processing power and on-board camera. 

Although the camera, a 350k pixel Charge-Coupled Device (CCD) capable of 16.8 

million colors output and producing up to 30 frames per second of real video, the robot is 

unable to process the images to this detail so the standard output is a 176x144 pixel 

image [3].   The cumulative constraints of the research presented in the following 

sections are taken into consideration in the implementation described in the next chapter.  

  2.2.2.1 Landmark-Based Localization 

 Due to the regulated environment of the Robocup competition, the most widely 

used technique for determining the pose of the robot on the field is by landmark 

detection.  Several algorithms utilize this methodology in developing localization 

solutions for the AIBO.  An experiment conducted in [9] uses variants and combinations 

of the Kalman filter, Markov, and Monte Carlo localization algorithms and implements 

them on the AIBO robot. One of these applications models the data derived from images, 

accompanied by range data from the AIBO’s infrared laser, in the sensor model.  Results 

indicate that in comparing these three approaches [9] the more robust and accurate 

solution is achieved by combining Markov localization with Kalman filtering (ML-EKF).  

Each of the variants is briefly presented in the next section.  
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The variant described in [9] is a unique combination of the Markov localization 

(ML) with the Kalman filter (EKF), which uses a two-dimensional Markov localization 

grid containing only possible robot positions, not its orientation. Landmark observations 

are integrated into this grid. If this observation has a high probability of being true, it is 

integrated into the EKF also. If this occurs, the distributions of the ML grid and the EKF 

are compared using a 2χ test [9].  Although this approach performs quick computations 

and efficiently outputs the EKF state, it is limited when using dense sensor matching 

instead of landmarks for navigation.  

The second solution is a variant of the Monte Carlo Localization (MCL). Similar 

to other versions of MCL, the concept consists of a random weighted sampling to 

represent the probability distribution. Different versions of MCL are developed by 

modifying the method used for adding samples to the sample set. The first method (SRL) 

is sensor resetting localization, where the samples are drawn according to the likelihood 

of the accuracy of the current observation. Samples, or fractions of samples, are added 

when the average likelihood of the observation p~ exceeds the threshold tp . 

∑= i in npp /)|(~ xz  

This equation denotes nz as the sensor measurement at iteration n and ix  as robot 

position.  The second method (Mix-MCL), adds a fixed number of samples to the 

distribution, adds the current probability density to the weight of the sample. This method 

was developed for extremely accurate sensor information [9]. The final method (A-MCL) 

uses the combination of two smoothed estimates of the observation likelihoods, one being 
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a long-term average and the other a short-term average of the observation likelihood. This 

method only adds samples if the short-term estimate is less than the reciprocal of the 

long-term average. 

To compare the ML-EKF, SRL, A-MCL, and Mix-MCL solutions, an AIBO was 

programmed to observe colored landmarks. The best results were found in the ML-EKF, 

SRL1, and A-MCL. The EKL didn’t deal with noise well, SRL2’s parameter settings 

increase the uncertainty, and Mix-MCL adds to the weight of the above-mentioned noisy 

samples, further increasing the uncertainty. In the kidnapped robot problem or global 

localization, ML-EKF, SRL2, Mix-MCL, and A-MCL prevailed for recovery time, but 

the Mix-MCL required the most processing time. The fastest, but least successful in the 

experiment was EKF. 

Several other competitors use the MCL approach in conjunction with landmark 

detection. In [24], a case study describes the enhancements of MCL algorithm to increase 

accuracy and performance in a mobile legged robot reliant on only its vision system. The 

localization solutions discussed in previous sections tried to improve performance of their 

algorithms by making modifications to the sampling techniques.  In the approach taken in 

[24], adjustments are not constrained to sampling methods. To gain the desired level of 

accuracy, the basically competent variant of MCL is enhanced with three additional 

components: 

1. Maintain a history of landmarks 

2. Update estimates using empirically-computed landmark distance model in 

addition to heading 



 

21 

3. Tuning and extending the motion model for improved odometry 

calculation 

The prevailing research used as a foundation for this particular solution also came from 

the arena of RoboCup legged soccer. In such studies, the sensor model, described earlier 

in this document, updates are based on sensed locations of landmarks that are known to 

be in the environment. Knowing its current location, the robot then determines the 

expected bearing angle of each of the landmarks seen in the current frame, Lll ∈,)(
expα . 

The posterior probability of a single observation is then estimated based on how well the 

measured bearing )(l
measα matches the expected bearing )(

exp
lα of the sensed location s. 
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What makes this sensor model unique is that the distances to the landmarks are ignored, 

since their estimates are quite noisy when using vision and their calculations have a non-

linear bias that degrade localization. This sensor model is capable of handling the 

kidnapped robot problem using a unique version of reseeding. Unlike traditional MCL 
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reseeding methods, the version in [24] does not require two landmarks to be seen 

concurrently because it keeps a history of landmarks, whose distance and angle are 

adjusted each frame based on the known pose. When a landmark is seen in successive 

frames, the distance and angle measurements are averaged, weighted by their confidence, 

and then used as input for reseeding. These archived landmarks are deleted from the 

history if they exceed an age threshold, or if the robot has been moved a significant 

distance. To incorporate the noisy distances into the update phase of the calculation, a 

corrective function (based on X and Y coordinates) is used to improve the distance 

estimate within a 5% error: 

Xxxaxaxaay iiiiYyi i
∈+++=∈ || 3

3
2

210  

where ia  are estimated coefficients derived when provided measured values x and actual 

values y. 

 The motion model of the basic MCL used in this experiment ),|( 11 −− T
k

TT
n axp x  

where 1−T
kx  is the old pose estimate, 1−Ta is the last action command, and T

kx is the new 

pose estimate [24]. This model was extended to eliminate the oscillation around the target 

location by allowing the robot to move at full speed until it comes within a threshold 

distance from the target location. Once inside 300mm of the target, its speed is reduced to 

10
1  its normal speed. This reduction in speed significantly reduced oscillation and 

improved localization accuracy. 

 When all three enhancements were implemented, tests of the localization 

accuracy were conducted using an ERS-7 robot achieving a 50% reduction in position 
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error and >50% improvement in orientation without a significant increase in the time 

taken to reach the target location. In addition to its ability to move to a target location, 

another test of the ability to stay localized to the target, stability, was performed. The 

extended motion model produced over 50% increase in distance accuracy and over 35% 

orientation accuracy with less than one second of additional processing time. When 

presented with collisions or kidnapping problems, the enhanced MCL reduced the 

increase in error to only 56%.  The algorithms in [9] and [24] share the same process of 

identifying landmarks, they segment the image for the colors they know identify the 

landmarks, then process the landmarks for their size and dimensions.  To reduce the 

amount of image processing necessary, other solutions rely on using edges instead of 

distance to objects. 

 In [36], the algorithm is weaned from processing the entire image, extracting only 

those features needed for localization, making it less impacted by lighting. This 

localization solution, based on MCL and using landmark detection, was developed by a 

team of students in Germany in preparation for the RoboCup soccer tournament. 

Traditionally, preprocessed (segmented) images are used in detecting the features needed 

for localization. This segmentation labels the pixels in a manner that ignores the influence 

of surrounding pixels. Since this solution is targeting known features (flags, goals,), a 

basic pattern recognition algorithm is used to extract the features; scanning vertical lines 

and marking pixels that show a significant change in U or V channels. When detecting 

lines, an edge detection algorithm can be used similarly using changes in the Y channel 

values. These image processing techniques provide the edges of the features, which are to 
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be used during self-localization. The traditional MCL uses distances and directions to the 

landmarks to perform localization. By using only the edges, there are more points of 

reference per image [36].  

 2.2.2.2 Edge Based Localization 

 The bearings on the edges are calculated once the hypothetical camera pose for a 

particle is known. The robot’s position can sometimes be calculated using these bearings 

on the landmarks, but since these calculations aren’t always accurate, they are only 

treated as hypotheses.  The possible positions replace samples in the distribution with a 

probability of ip′−1 . If not enough positions are calculated to replace the samples in the 

set, random samples are used.  A significant improvement was noted in the 

implementation of these MCL variants. They are still constrained by being a landmark-

based algorithm, but does not suffice in a landmark-free environment. Since the 

overriding goal is to compete these robots against a human team on a real field, it was 

suggested that a line-based localization be developed. Such an approach was initiated by 

the same two authors in [21]. The key 

logic in the new approach is to achieve 

speed by not processing all pixels of an 

image, rather concentrate on detection  

Figure 1: Pixel Projection 
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 of lines and edges using color classification. The distance to the point on the edge can be 

calculated by projecting the pixel onto the ground plane as shown in Figure 1.  

In using this line-based approach to self-localization, MCL is again used in 

moving the particles according to the motion model: 

errorodometryoldnew posepose Δ+Δ+=  

The observation model describes the probability for taking certain measurements at 

certain locations [21]. In this representation, the processing the camera images results in 

points on edges, which in turn are projected onto the field yielding an offset relative to 

the center of the robot body. The horizontal and vertical angles to the point are then 

calculated and compared with the measured angles in determining the most probable 

robot position.    

 With such diverse implementations of localization solutions in hand, the process 

to incorporate the use of a laser line to determine robot pose is less complicated. In the 

following discussion, several pieces of research are presented, involving using a laser to 

derive range values.  Such applications provide support for the theoretical concept this 

research--deriving distance by projecting a laser line into an image. 

2.3 Striping Laser and Camera Implementations 

The subsequent sections introduce applications of collaborative use of a camera 

and a laser for providing distance information, as a relocation tool, and for camera 

calibration. Each application introduces different mathematical and algorithmic 

relationships between a camera and the striping laser, providing a theoretical foundation 

for this research. 
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The first use of a striping laser in combination with a camera is to determine the 

distance from the robot to the object reflecting the laser line [17]. When using a striping 

laser for distance calculations, a simple triangulation protocol is used. The triangle is 

formed by the camera and laser line as depicted in Figure 2.  Here, s represents the 

distance between the camera and the laser producing hardware. The angle α represents 

the angular distance between a straight line drawn from the camera to the laser line and a 

 

Figure 2:  Camera/Laser Triangulation 

horizontal line from the camera to the horizon (vanishing view point). With this 

information, the distance between the laser and the obstacle is calculated as  

)cot(α•= sd .                     (8) 

To obtain the geometric relationship described in the figure, the laser line must 

first be extracted from the image. A variety of techniques can perform this extraction, e.g. 

pattern recognition, edge detection, etc. Next, the geometric relationship between the 

camera and the laser plane are measured [17]. Finally, the distance is calculated with 

β 

α 

d 

camera 

laser

object 
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equation (8). Now that the distance in the image is calculated, its relative real world 

distance is computed: 

sddt /~ 2Δ .      (9) 

In essence, the disparity in the distance measures is equivalent to the distance between 

two image pixels measured as real world distance.  This concept is implemented in the 

Chapter III for deriving distance for map-building and self-localization. 

 Another application collaboratively using a camera and a striping laser determines 

the location of a robot by locating its camera. Here, combining geometric information 

from the striping laser and information from the image is used to more accurately 

estimate the sensor location [18]. Using multiple sensors generating a single observation 

helps classify nodes on a topological map. These nodes are then used in relocation. First, 

the pixels on the laser line are used to detect vertical planes in the scene, which then have 

the images texture mapped to them, resulting in a non-scaled image. The relationship 

between image pixels and the selected plane can be described as: 
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where (x,y) are the coordinates in the image, X,Y,Z is the reference system defining a 

selected plane, K being the inner calibration of the camera, t is its location, λ  is the 

scaling factor, and [ ]21 rr  are the first two rows of the rotation matrix. Once the non-

scaled images are produced, their similarities can be used to align two observations of the 

same scene taken with different perspectives. In order to extend this concept into a 
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localization solution (relative to previous observations), there must exist a topological 

map with some pre-calculated node locations [18]. Once the measured observations are 

ascertained, the same alignment technique is used to align the observation with the pre-

calculated nodes on the topological map. In experiments performed, fallacies were found 

in solutions due to insufficient overlap of views, poorly textured areas, occlusions of the 

area, failed segmentation of walls, and specular reflections and lighting changes [18]. 

Although these issues did cause false positives/negatives during testing, the overall 

success was measured by the number of times the vehicle was found in the map and 

correctly located, excluding the true negatives, earning a success rate of over 83%.  

 Finally, a camera and striping laser have been used together to perform 

calibrations on a laser range finder [35]. The unique technique in [35] provides the model 

with precise initial estimations by applying an evolutionary algorithm to tune the initial 

parameters. The upcoming work takes note of how this geometric relationship is not only 

mathematically modeled, but also how the movement 

of the robot, upon which the laser and camera are 

mounted, affects this model’s parameters.  In this 

system model, an undistorted system model is 

derived from a three-dimensional point ( )zyx ,,P  

seen in Figure 3.  

Figure 3: Camera/Laser Geometric Model 
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Here, the point P is transformed, first into an undistorted, two-dimensional sensor 

coordinate, then into a distorted coordinate using a radial lens distortion. The resulting 

image coordinate is transformed into a pixel location using magnification coefficients and 

the center of the image. This pixel is used to compute the 3D coordinates P(x,y,z) of the 

illuminated scene point [35].   Unlike the other applications using a laser and camera, this 

particular research introduces a new factor of using geometric models in such 

computations; kinematics.  The calibration performed in [35] is directly affected by the 

kinematics of the robotic arm where the camera an laser are mounted. 

 The research presented in the previous sections demonstrates that it is possible to 

use geometric relationships between the camera, laser, and obstacle to determine the 

distance to that obstacle. The research provided thus far encompasses localization 

methods, sensors used to provide the data for localization, and a few unique applications 

involving the collaborative efforts of a camera and laser.  There exists another solution 

that extends the use of sensors beyond localization.  The data collected, in the manners 

described above, is also integral to map-building.  A map is a critical piece of information 

in the localization process.   If a map isn’t known ahead of time, one must be built as the 

robot navigates its way through its environment, a process known as Simultaneous 

Localization and Mapping. 

2.4 Simultaneous Localization and Mapping (SLAM) 

Localization is not the only problem faced in the development of autonomous 

robots.  Another concept that is fervently studied is simultaneous localization and 
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mapping (SLAM), where not only is the pose of the robot in its environment estimated, 

but induced from a map and sensor readings, where the map is built as the robot explores 

the environment.  Of course, since this matches the real world and includes the robot 

noisy motor controllers and sensors inhibited by noise, the algorithms developed as 

solutions to this problem are probabilistic in nature.  The most popular solutions used in 

estimating the map and robot location are Kalman filters[16, 19], Dempster’s expectation 

maximization algorithm, and those algorithms that identify objects in the environment 

[26, 25].  Each of these methodologies are characterized by the types of information they 

produce such as identifying objects or significant features in the environment or verifying 

the accuracy of a sensor measurement over time.  Regardless of the approach taken, there 

are two significant sources of information that must be dealt with when using SLAM.     

The first source of information is identical to that used with localization 

algorithms; sensors.  The biggest problem with sensors is dealing with noise.  This noise 

isn’t necessarily caused by the usual inaccuracies of the sensors themselves, but by the 

second source of data; the motion commands (controls) issued during environment 

exploration [26]. The sensor and motion models are independent of each other, but have a 

dependency through the map.    So the job of the SLAM algorithm is to compensate for 

such errors, as well as complications including the high dimensionality of entities being 

mapped, the correspondence (data association) problem, and the dynamic nature of the 

environment being mapped [26]. Each family of algorithms is able to handle a limited 

number of these complications.  Two such approaches, the Kalman filter and Expectation 

Maximization, are widely used.  
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 Kalman filters, as discussed previously, are Bayes filters whic represent posterior 

distributions with Gaussians.  When working with mapping, the Gaussian model is the 

full state vector [26] 

T
tt ms ),(x=      (13) 

made up of the robot’s pose x  and the map m.  Using Kalman filters for mapping 

requires three primary assumptions be made: the motion model must be linear with added 

Gaussian noise, the same goes for the sensor model, and initial uncertainty must be 

Gaussian [26]. With this in mind, the pose and sensor functions must be linearized, since 

they are not traditionally linear functions.  Once linearization has been performed, the 

standard Kalman filter equations (Table 1) can be used. When estimating a map, not 

everything in the environment is going to be known ahead of time, so as each new feature 

is stumbled upon, a separate Kalman filter used. If that feature is repeatedly seen, it is 

added to the feature list for the map. In general, Kalman filters are most well known for 

their ability to “estimate the full posterior” making it possible to maintain most likely 

map and pose locations and a full uncertainty map coupled with the ability to converge to 

a true map and robot location.  As with any probabilistic solution, there is a limitation to 

using Kalman filters for mapping; the Gaussian noise assumption. Generally this 

becomes significant when dealing with the correspondence problem, being able to 

associate individual sensor measurements with features in the map [26].  The maps 

produced contain location of landmark-type features, but little geometric information 

about the environment.   
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 In contrast, the Expectation Maximization (EM) algorithm solves the 

correspondence problem by repeatedly relocalizing the robot relative to the present map 

instead of the pose posteriors. In EM, the posteriors are calculated for a given map, 

expectation step, and then the most likely map given these pose estimations is calculated, 

maximization step.  These steps, performed iteratively starting with an empty map, 

produce a more accurate map. The expectation step is so named because it builds on the 

expectation that the path of the robot is known and calculates : 

),|( ][ ti dmp τx        (14) 

Which is the posterior for the pose τx  conditioned on all data leading up to time t, 

td and the i-th map ][im .  In contrast to standard localization, data over the entire interval 

[1…t] is used to estimate the posterior pose at time τ , even if τ <t. The maximization 

step then finds a new map m that maximizes the log likelihood of the sensor 

measurements log ),|( mxzp ττ , for all τ  and all poses tx and under the expectation 

calculated in the expectation step [26].  EM  produces maps that are topologically correct, 

given correspondence problems presented by such things as large loops.    The only 

pitfall of the EM algorithm is that it is an offline algorithm and  subject to local maxima. 

 There are currently no successful implementations of SLAM on an AIBO due to 

the requirement for an accurate motion model, as the accelerometer sensor are unreliable 

for inferring pose information. 
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2.5 Summary 

The aforementioned research describing localization implementations, both 

generic and AIBO specific, and applications combining a camera and striping laser 

describe the techniques required to develop the solution presented in this publication. The 

core problem to be solved is one of localization, specifically using the AIBO ERS-7. Like 

the AIBO-specific localization techniques discussed earlier, this research focuses on 

Monte Carlo-style localization. In contrast to existing solutions, this research moves 

away from relying on colored landmarks and lines for determining the robot’s pose. 

Instead, localization of an AIBO robot in a non-soccer environment and have it 

simultaneously localize and map its environment. 

 In order to use the vision sensor to provide the sensor data for localization, one 

must extract geometric relationships to determine the range between the robot and 

obstacles captured by its camera. In this research, a striping laser is attached to the robot 

and the projected laser beam is then captured in the camera images. Since the laser is 

mounted in line with the camera, its orientation in the image never changes. Hence, the 

laser line seen in the image provides a horizontal reference for the skew of the image 

itself. The research implementing active triangulation with a laser line in an image 

provides the basic tools for determining distance between an obstacle and the robot by 

using the geometric relationship between the laser, camera, and obstacle. In our case, the 

configuration is different, so additional research is performed to transform the system 

model relative to our specific configuration. Additionally, the kinematic chains specific 

to the AIBO are far more complicated than those for the 5 DOF arm [35]. This chapter 
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briefly covered various mathematical applications and solutions that are compiled and 

modified to provide a solution to a more dynamic localization process using the ERS-7 

AIBO.   
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III. Methodology 

 This chapter presents the research and implementation aimed to support the 

theory that distance between an AIBO mobile robot and an obstacle can be determined by 

the distance between a static feature native to all images a pattern projected onto the 

image.  This distance is used within the sensor model and is coupled with the pose of the 

robot and its motion model and fed into a simultaneous localization and mapping 

(SLAM) application. 

3.1 Overview 

In this research, the AIBO ERS-7 serves as an autonomous platform from which images 

are gathered for SLAM.  Sensor readings are provided by a disparity between the horizon 

and a laser line projected into the AIBO’s camera frame as shown in Figure 4. 

Laser LineLaser Line

Horizon Line:Horizon Line:
Intersection of GroundIntersection of Ground
Plane with Image PlanePlane with Image Plane

Ground Plane:Ground Plane:
Transformed to Transformed to 

Camera PerspectiveCamera Perspective

LaserLaser

CameraCamera

Laser LineLaser Line

Horizon Line:Horizon Line:
Intersection of GroundIntersection of Ground
Plane with Image PlanePlane with Image Plane

Ground Plane:Ground Plane:
Transformed to Transformed to 

Camera PerspectiveCamera Perspective

LaserLaser

CameraCamera  

Figure 4: Theoretical Concept  of Determining Distance Using Horizon and Striping Laser 
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This is based on a relationship between the distance and position of objects (the laser line 

in this research): those that are far away are close to the horizon.   The disparity between 

the pixels of the two lines have relative real-world distance [1].  Therefore, each pixel on 

the laser line is assigned a relative real-world distance, representing our sensor reading 

for that location in front of the robot. 

3.2 The AIBO 

 The utilization of the many assets of the AIBO requires a thorough understanding 

of the hardware native to the robot.  The physical characteristics of the robot include: 

576MHz processor, 64 MB RAM, 802.11b wireless ethernet (standard), MemoryStick 

reader/writer, 18 PID joints, each with force sensing, 26 independent LEDs, 350k pixel 

video camera with 16.8 million colors at 30 frames per second, 3 IR distance sensors, 3 

accelerometers, 10 pressure sensitive buttons (two on head, three on back, four feet, and 

one under belly ), and 1 button under the mouth. The components critical to this research 

are the camera, the wireless Ethernet, and the joints of the legs and head [5].   Due to 

limited RAM and processing power of the robot, the majority of the processing for this 

research is done offline through wireless communication.   

 As for software selected, the open source Tekkotsu API developed at Carnegie 

Mellon University is built directly on top of the Open-R architecture, is used [2,8].  

Open-R was initially designed to create a standard architecture for “entertainment” 

robots.  It provides an interface for sensors and actuators, methods of obtaining 

information from functions of these components, and has a layered architecture based on 
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Asperos [8].  Open-R supports Tekkotsu’s object-oriented and event-passing architecture, 

depicted in Figure 5 [2], making full use of the template and inheritance features of C++. 

It was originally written for the Sony AIBO, but can also be compiled for Linux, Mac OS 

X, and any other BSD-based OS. The framework is designed to handle routine tasks for 

the user, allowing them to concentrate on higher level tasks.  Some of the services 

Tekkotsu provides include basic visual processing, forward and inverse kinematics 

solvers, remote monitoring and teleoperation tools, and wireless networking support.  

Tekkotsu builds on several third party libraries, such as ROBOOP (general kinematics), 

and NEWMAT (matrix operations) [2].  Tekkotsu’s internal data flow is shown in Figure 

5. 

 

Figure 5: Tekkotsu Data Flow 
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In order to use Tekkotsu, one must establish a separate port and a server for each type of 

data to be transmitted. 

3.2 Capturing Images 

With the AIBO’s onboard camera as the primary sensor upon which to build the 

sensor model for use in computing pose, it is critical to become familiar with the images 

the camera records, how Tekkotsu manipulates them, and how to transmit those images.  

On the client side, we develop the software to receive these images and restore them to 

their original format.   

   The AIBO’s camera is a Charge Coupled Device (CCD) camera able to capture 

and store images with a resolution up to 416x320 pixels.  The Tekkotsu framework 

allows users to configure the vision system.  A simple 

configuration file contains modifiable settings such as 

white balance, compression, type of image, etc. (see 

Appendix A for entire configuration file).  

Figure 6: Camera Configuration 

 To reduce transmission time, reduce loss of information 

in transmission, and conserve memory, the camera configuration was set to the values as 

shown in Figure 6. The gain and shutter speed settings control the amount of noise and 

motion blur.  Higher gain and slower shutter speed brighten the image, but increase noise 

and increase motion blur.  In the aforementioned configuration (Figure 6), the rawcam 

settings affect the traditional image while the rlecam settings are concerned with the 

white balance = indoor
gain = mid
shutter speed = fast
resolution = full
rawcam_encoding = color
rawcam_compression = none
rawcam_compress_quality = 85
rawcam_y_skip = 2
rawcam_uv_skip = 3
raw_transport = udp
rle_transport = udp
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segmented image engine, also native to this CCD camera.  There are various additional 

settings in the configuration of the camera that allow for customizing the segmentation of 

the image that were not altered for this research. The configuration file located in 

Appendix A provides a brief description of each of the configuration settings mentioned 

above. The image segmentation process is discussed in section 3.4.  Once the camera is 

configured and the transmission type determined (UDP/TCP), the simple activation of the 

camera servers automatically transmits images over ports 10011(raw images) and 

10012(segmented images) to their registered clients.   

 3.2.1 Raw Image  

The raw image mirrors the real world without manipulation.  Unlike traditional images, 

the AIBO’s CCD camera records images in YUV standard.  The YUV model defines a 

color space in terms of one luminance and two chrominance components. YUV is used in 

the PAL and NTSC systems of television broadcasting, which is the standard in much of 

the world.  YUV models human perception of color more closely than the standard RGB 

model used in computer graphics hardware, but not as closely as the HSV color space.  Y 

stands for the luminance component (the brightness) and U and V are the chrominance 

(color) components. The YCbCr or YPbPr color space, used in component video, is 

derived from it (Cb/Pb and Cr/Pr are simply scaled versions of U and V), and are 

sometimes inaccurately termed "YUV" [34].  In the image buffer described above, the 

YUV information is broken down into its components and compressed.  The compression 

settings call for skipping 2log2 of Y channel pixels and 3log2  U and V channel pixels.  

As a result, a 208 x 160 (Y,U,V) image, is encoded as a 104 x 80 (Y), 52 x 40 (U & V) 

http://en.wikipedia.org/wiki/Color_space
http://en.wikipedia.org/wiki/Luminance_%28video%29
http://en.wikipedia.org/wiki/Chrominance
http://en.wikipedia.org/wiki/PAL
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/RGB
http://en.wikipedia.org/wiki/HSV_color_space
http://en.wikipedia.org/wiki/Luminance_%28video%29
http://en.wikipedia.org/wiki/Chrominance
http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/YPbPr
http://en.wikipedia.org/wiki/Component_video
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image.  As mentioned before, this compression reduces the transmission time, which is 

critical to processing the images in real-time.    Once the buffered image data is parsed 

and stored in the structure, the client software uncompresses the image and converts it to 

RGB for viewing.  This conversion is possible since YUV signals are created from an 

original RGB (red, green and blue) source. The weighted values of R, G and B are added 

together to produce a single Y signal, representing the overall brightness, or luminance, 

of that spot. The U signal is then created by subtracting the Y from the blue signal of the 

original RGB, and then scaling; and V by subtracting the Y from the red, and then scaling 

by a different factor. The RGB values from the YUV values are derived with the 

algorithm in Figure 7. 

– buffersize =( sizeof raw_images.data )/4;
– for (q = 0; q< buffersize; q+=3)
– {

• int C = raw_images.data[q] - 16;
• int D = raw_images.data[q+2]-128;
• int E = raw_images.data[q+1]-128;

• raw_images.data[q] = clip((298*C+409*E+128)>>8);
• raw_images.data[q+1] = clip((298*C-100*D-208*E+128)>>8);
• raw_images.data[q+2] = clip((298*C+516*D+128)>>8);

– }
• with clip() defined as follows:

• void clip(int x)
• {
• if(x<0) return 0;
• if(x>255)return 255;
• else return x;
• }

 

Figure 7: YUV to RGB Conversion 

 

http://en.wikipedia.org/wiki/RGB
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Blue
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The purpose of this function is to keep the converted values within the RGB range of 

2550 ≤≤ x .  At this point, the raw image is restored  to its original form.  Since the raw 

image is fully reconstructed, the system then reads and processes the segmented image. 

  3.2.2 Segmented Image  

 Segmentation of an image is simply the removal of all the unwanted colors from 

the image. Provided an image from which to extract a feature that can be uniquely 

identified by its color, segmentation eliminates the complexity of extracting the laser line. 

The segmentation process is done in Tekkotsu by taking 

a series of sample images that represent those good 

objects and feeding them through a calibration tool that 

builds a threshhold and color file(s) included in the 

segmentation 

       Figure 8: Color Vision Train 

 configuration.  These files are automatically loaded at boot-up of the robot, telling the 

Tekkotsu behaviors which colors are searched for in the image.  There are two java 

classes that handle creating the segmentation setup. The first is VisionTrain, which 

allows us to send it a series of images (taken from the AIBO). VisionTrain creates a color 

palette based on the colors in those images, and select the colors to retain. The second 

tool is called VisionSegment, which lets us check our test segmentation, by feeding it the 

configuration created in VisionTrain and the same set of sample images it outputs the 

effect that our segmentation had on the set of sample images.[29]  In this case, we 

calibrated the segmentation engine to keep only the red associated with the laser.  
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White Brick Wall Black NotebookWhite Brick Wall Black Notebook

Unfortunately, the laser line may not be the only red object in the camera’s view.   Our 

segmentation is also guilty of identifying such things as orange cones, pink cups, and red 

variations on clothing and skin pigmentation.  It was decided not to recalibrate to reduce 

these random objects, since the color of the laser line changes as the color of the object 

that reflects the laser changes.  

Black backgrounds produce red 

lines, while lighter backgrounds 

cause the line to be more pink in 

hue.   

    Figure 9: Laser Line Colors 

Tekkotsu’s SegmentedCamBehavior encodes the segmented images, preparing them for 

wireless transmission.  The client software uses the same methodology to capture and 

parse the segmented image buffer as for the raw buffer.  The only difference is in the 

reconstruction of the image.  The process began with converting the segmented image to 

a white background with the preserved color being black. With the successful 

reconstruction of the segmented image, it is now processed to extract the laser line and 

store the relative information. 

3.4 Extracting Laser Line 

To process this segmented image, the Open Source Vision Library (OpenCV) [10] 

developed by Intel is used.  The first step is to convert the array of integers representing 

the image to an OpenCV-friendly format (IplImage).  The new IplImage now references 
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the segmented image array, able to be passed around between OpenCV methods for 

processing.  The next critical process is determining where the laser lines appear in the 

image. In order to use the laser line pixels in the estimation of distance, we must know 

their location in reference to the horizon line.  

 The tools found in the OpenCV library provide a means to extract the line 

segments and store their endpoints using Hough Transforms.  The underlying principle of 

the Hough transform is that there are an infinite number of potential lines that pass 

through any point, each at a different orientation. The purpose of the transform is to 

determine which of these theoretical lines pass through most features in an image - that 

is, which lines fit most closely to the data in the image. In the standard Hough transform, 

each line is represented by two parameters, commonly called r and θ, which represent the 

length and angle from the origin of a normal to the line in question. In other words, a line 

is described as being at an angle 90° from θ, and being r units away from the origin at its 

closest point. This representation of the two parameters is sometimes referred to as 

Hough space. A set of points which form a straight line produces Hough transforms 

which cross at the parameters for that line [33].  In this particular case,  the  probabilistic 

Hough transform is used since it is more efficient in pictures containing a few long linear 

segments. It returns line segments rather than the whole lines. Every segment is 

represented by starting and ending points.  These line segments (their endpoints) are 

stored in an OpenCV object (cvLine).   

http://en.wikipedia.org/wiki/Origin
http://en.wikipedia.org/wiki/Normal
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3.5 Estimating Horizon Line 

Since the horizon is used as the fixed reference in the image, the first most critical 

estimation to be made in this research is the location of this horizon. The information  

known about the motion of the robot and camera tells us a lot about the horizon.  The 

same concept is used in [13] to calibrate a camera for motion for robotic applications. 

There are several ways that the horizon has been calculated.  The most popular tactic is 

using vanishing lines in the image [4, 13].  Once the vanishing lines are identified, 

estimates of their vanishing points are determined.  By connecting these two points, 

found at an infinite distance from the camera, it is possible to determine the location of 

the horizon in the image shown in Figure 10 [13].   

 

Figure 10: Horizon using Vanishing Lines 

Extracting the vanishing points shown in Figure 10 is accomplished using projective 

reconstruction and stereo imaging to calculate the horizon points. Unfortunately, the 

resolution of the AIBO’s camera being visible, coupled with only image features within 

67.056 cm of the camera, inhibits the extraction of these vanishing lines.  Due to the poor 

resolution, another method was used in estimating the location of the horizon in the 

image.  
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 The horizon is defined as the intersection of the ground plane, transformed to the 

camera's perspective, and the image frame as shown in Figure 11 [11]. For the AIBO, 

there are many parameters to consider in deriving the ground plane equation of a robot 

with 15 degrees of freedom (3 degrees for each leg, 3 degrees for the camera). The robot 

 

Figure 11: Horizon Using Intersecting Planes 

itself is capable of providing us with information about its stance as well as the camera’s 

rotation.  As features of the robot are discussed, refer to Figures 12 and 13. The purpose 

of the ground plane equation is to capture the tilt of the robot's body, that is, the angle 

between the robot and ground along the x axis [30] which directly impacts the horizon’s 

position and z axis which impacts the rotation in the image.  The pan about a vertical pan 

axis , Figure 12 axis 3y ,[13] also changes the position of the horizon, as discussed later 

in this section.  Thankfully, the Tekkotsu software developed a behavior to calculate the 

ground plane equation (GroundPlaneBehavior) using the location of each foot in 

reference to the base frame. The original behavior ("GroundPlaneBehavior") used the 

(x,y,z) location of the three feet  on the ground, along with the accelerator values, to 
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capture the tilt of the robot. The accelerators returns a real valued estimate of the robot’s 

acceleration along the x,y,z axes [30].  For our purposes, the behavior is modified to 

exclude the accelerators, since the horizon's rotation isn’t affected by those values 

(left/right, forward/reverse, up/down) and the sensors are so noisy they actually decay the 

solution. 

base frame

accelerators

foot frame
(ax,-by, cz)(-ax,-by, cz)

x-x

y

-y

z

-z
base frame

accelerators

foot frame
(ax,-by, cz)(-ax,-by, cz)

x-x

y

-y

z

-z

 

 Figure 12: AIBO Diagram 1 

 The initial assumption made is that the ground was flat (0,0,0).  The ground plane 

equation is derived by fitting a  plane to the three “down” legs; represented by three 

translation vectors in reference to the base frame. Before beginning the transformation of 

the ground plane vector to the camera frame, it must be noted that the camera rotation 

and not the camera height affects the horizon’s position and rotation [1].  The 

transformation translation is shown in Figure 12 and 13.  Each transformation introduces 
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error into the calculations, since each robot and each motor are not identical.  

Base Frame

Camera Frame
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m
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m

19.5m
m
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Figure 13:  AIBO Frame Translations 

Once the estimation of the ground plane is generated and transformed to the camera’s 

perspective, the ground plane vector is projected to a distance in the z (relative to the base 

frame) direction as to intersect the image plane.  Since the camera’s resolution prevents 

the image from picking up the laser line at a distance greater than approximately 67.056 

cm , we use a distance of 91.44 cm to simulate the infinite distance of the horizon.  The 

horizon is drawn on the image by selecting a point in space using our simulated infinite 

distance forward.  The point is also rotated about the up/down axis (y) to compensate for  
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Figure 14: AIBO Frame Translation 
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the left/right pan of the head. These (x,y) values are substituted into the ground plane 

equation, 
3

331
c

ybxa
z

−−
= , to compute the z coordinate.   By adding the vector of 

coefficients to this x,y,z  point, we have two points which represent the normal of the 

horizon.  To find the corresponding location of the horizon in the image, the (x,y,z) 

coordinates are converted to pixel coordinates pp yx , : 
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where rrr zyx ,,  are real world distances and hf   and vf are the horizontal and vertical 

field of vision (FOV) respectively, and w and h are image width and height (in pixels). 

The OpenCV Image Processing Library (which uses a Bresenham algorithm) is then used 

to draw the normal of the horizon line in the image to test the accuracy of the estimation.  

This vertical line provides us information about the robot’s stance as well as the horizon’s 

rotation in the image. At this point, the horizon and lines extracted from the segmented 

image provide the information necessary to approximate the distance between the robot 

and the obstacle reflecting the striping laser beam.     
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3.5 Determining Distance 

There are several methods to determine distance between a camera and an object.  The 

most popular method is triangulation, as discussed in Section 2.2.3. The camera, laser, 

and horizon have a geometric relationship and the distance between the laser and obstacle 

is determined by plugging the angle and distance between the angle and camera into the 

Pythagorean Theorem, solving for the “adjacent side” of the right triangle.  The 

configuration of the camera and laser on the AIBO doesn’t provide us a right triangle 

relationship as in laser/camera configurations described in Chapter 2 (see Figure 6).    

Distance Between 
Laser and Camera

Laser Beam

Camera Plane

Laser

Camera d = Pixel 
Distance

D=Distance between robot center and 
obstacle

Unknown 
Angle

Distance Between 
Laser and Camera

Laser Beam

Camera Plane

Laser Beam

Camera Plane

Laser

Camera d = Pixel 
Distance

D=Distance between robot center and 
obstacle

Unknown 
Angle

 

Figure 15: Triangulation 

Therefore, a different approach is taken in determining the distance D.  The approach 

taken in this research assigns a real-world distance D for each pixel in the image.  To 

begin this process, the simplest calculation is the pixel distance d.  First, the horizon is 

oriented in its natural position in the image; the center. This adjustment must be mirrored 

by every pixel in the image.  Since determining the pixel distance is only dependent on 

the relationship between the laser line and horizon line, corresponding adjustments are 
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only made to those pixels containing the laser line. The actual adjustments to both lines 

requires the computing the horizon’s angle of rotation relative to the horizontal.  This is 

easily derived from the perpendicular’s endpoints 2121 ,,, yyxx [4]:  

)(
)(

21

12

yy
xxslope

−
−

=  

)arctan(slope=α  

 The horizon is rotated by -α so it is parallel to the image frame horizontal.  The laser 

line segments must maintain the angular relationship to the horizon line, so each pixel of 

the laser line must also be rotated by -α .  

)cos()sin(
)sin()cos(

αα
αα
−+−=′
−−−=′

yxy
yxx

 

In addition to the rotation, there is the need to compensate for the nod of the head.  Since 

the horizon’s position in the image changes relative to the nod angle, the laser line 

segments must reflect the same motion to maintain a true relationship with the horizon.  

The distance between the horizon, hy  and its natural position in the image (center), cy  is 

used as the translation value ch yyd −=  applied to the laser line segments, dyy +′=′′ .  

Since only the endpoints of each of these line segments are retained, an algorithm is 

needed to locate each pixel of the line segment, as if we are drawing the line pixel by 

pixel.   Tracing through pixels of a line in an image is not as simple as iterating through 

the x coordinates, adding the slope of the line to the y coordinates due to the native 
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structure of a pixel being an integer.  Thus, a version of the Bresenham’s Line Algorithm 

is used to decide which pixel values are classified as being laser line pixels.  Bresenham's 

Line Algorithm determines which points on a 2-dimensional raster should be plotted in 

order to form a close approximation to a straight line between two given points [32]. 

Each pixel classified as a laser line pixel is rotated by –α and translated by d. The original 

x,y values and the rotated/translated x,y values are  in the appropriate index of an array of 

structures, created to maintain the metrics of each pixel in the image.  The number of 

pixels between the line segment pixel and corresponding horizon line pixel is initially 

stored in this structure as distance. After the entire image is processed and the pixel 

information stored, the client program is modified as to run calibration tests to develop 

the sensor model. 

 3.5.1 Sensor Model   

 To develop the sensor model, the robot is placed at discrete distances (measured 

in mm) from a box placed in its field of view as to reflect the laser. The client program is 

executed ten times at each one-centimeter intervals, ranging one foot to 91.44 cm from 

the center of body.  The decision establishing 91.44 cm  as the maximum distance 

threshold is based on the camera’s inability to capture the laser line at a distance at 

greater than 67.06 cm from the robots center of body.  For each of the one centimeter 

intervals, the corresponding pixel distances are recorded (see Table 1). These pixel 

distances subsequently provide indexes into a lookup table used during program 

execution to return an estimated distance.  Figure 16 shows the error in distance induced 

within one standard deviation from the mean.  The array is able to return the relative real- 

http://en.wikipedia.org/wiki/Raster
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world distance for the indexed pixel distance.   

 

 

Figure 16: Sensor Model Error 

The approximations are critical components of the sensor model the SLAM software 

needs to build the map of the environment as well as correcting the estimated pose.   The 

SLAM software using sensor data produced by this client software is developed for a 

Pioneer wheeled robot.  Hence, the sensor model developed in this research must 

conform to characteristics of the sonar sensor model of the Pioneer.  To make this 

adjustment, a single scan of the sensor is represented by 104 pixels (one row) of the 

image.  In essence, the distance information stored in each column of the image cts as 

though it were a distance reading from one of 104 sensor readings ( Figure 17). 
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Figure 17: Sensor Model 

The sensor model provides the distance to sensor (d), range(c), sensor_theta (a), theta to 

sensor(b) for mapping.  These values are computed using geometric relationships 

depicted in Figure 18 
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Figure 18: Geometric Sensor Model 

First, the sensor theta describes the angle measured from the camera to each pixel: 

51_*
104

_ −= numberpixelHorizFOVthetasensor  

where HorizFOV is the Horizontal field of view, and  pixel_number is the pixel (0-104).  

Next, the distance to theta and theta to sensor  values are computed in the following 

manner (reference Figure 18): 

απθ −=  

)cos(222 θabbad −+=  
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)/)sin(*arcsin( da θβ =  

Once these four values are computed, they are converted from the AIBO coordinate 

system to the Pioneer coordinate system (see Figure 19), then written to a file for 

processing by the SLAM software.   
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Figure 19: AIBO/Pioneer Coordinate Systems 

The last component of SLAM  developed is a motion model  of the AIBO’s walk. The 

motion model needs to accurately determine the location of the robot having traveled 

some distance in a certain direction.  To model the AIBO’s walk, a timing sequence is 

used to break the walk down into measurable distances. There are two reasons a timing 

sequence was used to discretize the walk.  First, identifying a single step using joint 

cycles is inaccurate due to the dynamics of the quadrant trot.  There are a total of 54 

parameters which describe the walk. The step is found to consist of twelve joint 

adjustments, but pinpointing the first value of the cycle is extremely tricky. Since the 

walk cycle never repeats a joint angle, to calculate distance traveled in a single “step” is 
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not consistent.  Second, the complexity of using joint cycles is increased when 

synchronizing each step sequence with the captured images.  The images are uniquely 

identified by a timestamp that begins recording at boot-up of the robot.  To maintain 

consistency between the milliseconds elapsed between image captures and distance 

traveled, the walk was modeled using time slices.  First, timed trials are performed to 

reveal that it took the AIBO approximately 7940 ms to travel about1 meter.  Next, one 

meter was measured and the AIBO was programmed to walk that distance at 100 mm/sec 

for over 100 runs. Notice our first assumption of a constant forward velocity.  Each of 

these runs was recorded (see Figure 20) using a marker attached to the AIBO. 

 

Figure 20: AIBO Motion Tracking 

 The assumptions made for future use of this motion model is that the AIBO would 

maintain a 100 mm/sec pace forward and turn only by adjusting angular velocity 

(radians/sec) control.  Figure 21 show the results of 10 runs of walking straight for a 

meter and Figure 21 shows the results of recording turns ranging from -50° to 50° 
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degrees within that meter.  Keeping with the time-slicing modeling approach, the turns 

were accomplished within the 1 meter by programming the robot to walk for 1000-5000 

milliseconds with an angular velocity of 10 degrees + offset (0.040 radians) for 15 trials. 

For the remaining seconds, the robot walks straight forward.  The marker trails provide 

measurable (x,y) locations at various distances.  The trials were performed on a 1/2 inch 

grid posterboard. Points are collected at five distances, 1, 0.5, 0.25, 0.175, and  0.0875 

meters, and the resulting ),,( θyx  are measured with θ  as the robot’s heading.    The data 

points are analyzed and a curve-fit is performed, providing us a polynomial equation that 

establishes a relationship between the (x,y)  and θ .  Given a set of x,y coordinates, the 

resulting polynomial reproduces the curves found in the two figures below.  Deriving this 

relationship is critical for determining pose as discussed in the next section.   

                             

     Figure 21: (left)Straight Walk: 1 meter (Right) Angular Walk: 1 meter 

3.6 Determining Pose 

Critical to the mapping portion of SLAM is the robot pose and the distance to the 

obstacles detected by the sensor.  The pose for the AIBO is calculated using two pieces of 
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information extracted from the robot in real-time.  First is how far the AIBO has traveled 

since its last camera snapshot.  The concern here is that the distance traveled is 

synchronized with the image that has been processed.  To do this, the timestamp of the 

image is used to determine how long the robot has walked since the previous image.  This 

time (milliseconds), )( 12 tt −  is divided by the established time for 1 meter of forward 

motion (7820 ms), providing us with distance traveled, r (measured in mm).  

1000*
7820

)( 12 ttr −
=  

 Next, the angular velocity, ω (radians/sec), captured directly from the remote control 

software, provides us with direction of the walk, θ  (measured in radians): 

1000
)(* 12 tt −

=
ω

θ  

 The corresponding rectangular coordinates is calculated from these polar coordinates 

using the simple calculations: 

θcosrx =  
θsinry =  

 

The heading of the robot, z is computed from the parametric equation produced by the 

curve-fitting software [37]: 

z = a + bx0y1 + cx0y2 + dx1y0 + ex1y1 + fx1y2 + gx2y0 + hx2y1 + ix2y2
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which identifies the following coefficients:  

                                                                     

 

 

 

 

 

Absolute Error

Minimum:         -2.574403E-01 
Maximum:          2.301725E-01 
Mean:            -4.850480E-08 
Median:          -1.769848E-02 
Sample Variance:  1.115304E-02 
Sample Std Dev:   1.056079E-01 
Pop. Variance:    1.148107E-02 
Pop. Std Dev:     1.071497E-01 
Variation:       -2.177268E+06
Skew:            -2.417118E-01 
Kurtosis:         1.870974E-01 

 

Figure 22: Sensor Model Data Statistics(left) and Curve Fit Equation Surface Plot  

This equation is fit (see Figure 22) to the average x,y,θ values calculated for data 

collected at 10° increments and the previously described distances.  Their distribution is 

depicted in Figure 22. The (x,y,z) represent the robot’s estimation of its current pose.  

Initially, the robot’s location is (0,0,0)  at 0t = 0.  Subsequent (x,y)  values are 

accumulated at each time step t (every 3 image frames), rotated by the heading of the 

previous time slice, 1−t , 

Coefficients 
 

a =  1.2053355738433053E-02 
b =  2.1166856360492894E-02 
c = -3.0603347809746204E-06 
d =  1.6425508250918786E-04 
e = -4.6808579487236736E-05 
f =  1.3109629918730776E-08 
g = -1.4198703166187395E-07 
h =  2.7997429433335293E-08 
i = -1.1698188063611851E-11 
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 and stored with the corresponding sensor information for that time slice. Finally, the 

heading, z, holds the heading.   The SLAM software uses the compilation of information 

collected over the exploration of a maze to build the map of the AIBO’s environment. 

This is done by plotting the pose and sensor distance readings on a grid having a 

granularity of 5 cm, meaning each grid cell represents 5 cm in the real world.  Each 

sensor reading describes what is seen by the robot relative to its center of mass.  To 

generalize, the distance to sensor describes how far the specified pixel is from the center 

of the robot, the theta to sensor represents the angle between the center of the robot and 

its camera (accounting for the pan motion), the range is the distance between the camera 

and the pixel, and finally the sensor theta is an angular relationship between the camera 

and each pixel represented in the scan. Each sensor reading is plotted using the geometric 

relationship of these four values as the probability of that grid location accounting for an 

actual detected object increases.  In other words, if the same pixel is identified as 

containing the reflected laser beam over numerous scans, the belief of its true existence 

grows iteratively stronger. Once the map has been built, the mapping software reviews 

the map, cleaning up those plotted points with probabilities below the established 

threshold, leaving us with what we believe is an accurate map of the environment.  The 

next phase of the SLAM implementation involves using the sensor and motion models to 

determine the accuracy of the pose/sensor estimates currently present in the map.   
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3.8 Localization 

For each set of distanced traveled (the local map), the software compares the estimated 

pose of the robot with the probability distribution of locations based on the standard 

deviations derived during testing.  It then maximizes the distribution, choosing the 

particle with the highest probability as the robot’s updated pose.  The subsequent local 

map is adjusted to compensate for the newly update pose.  In this manner, the robot traces 

through the robots initial estimations, correcting the map previously constructed. 

3.9 Summary 

The processes described in this chapter are focused on providing existing SLAM software 

with the information necessary to perform localization and mapping.    The images are 

used as sensor inputs for what the robot sees as it walks around.  The pose is an 

estimation of its current position relative to its starting location.  Our peers in research 

and academics all over the world successfully use landmark and line-based localization 

with the AIBO.  The primary challenge in this research is developing accurate sensor  

and motion models for SLAM.  Other research and development teams aren’t 

successfully implementing SLAM with the AIBO because of the complexity developing 

an accurate motion model for a quadruped robot with 20 degrees of freedom [24].  We 

have made some assumptions and performed some manual calculations to reduce some 

that “gray area”.  In the following chapters present the analysis of both the mapping and 

localization results using the estimations made in this research software.   
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IV. Results and Analysis 

 This chapter presents the factors that impact the sensor data and pose 

determination.  Results of testing and analysis of the motion and sensor models described 

in the previous chapter are also discussed.   

4.1 Sensor Model 

 The sensor model, regardless of the development technique used, is prone to 

error.  In this particular application, error is introduced into the model by several factors, 

the most detrimental being motion and the environment. 

   The two central motions contributing to error in the sensor model are 1) Body 

Motion 2) Head Motion and 3) Image Granularity. The jolting walk of the AIBO causes 

the images captured by the camera to contain noise.  This noise reflects the inability of 

the camera to capture accurate positions of image participants due constant, rigorous 

movement.  By the time the image is captured, things have moved on in the motion cycle. 

The calculations relying on extracting accurate locations of features in the image cannot 

compensate for these random motions.  Such noise has a negative impact on the accuracy 

of our distance calculations.  In the figures below, the AIBO is traversing a simulated 

hallway, scanning walls to its left and right. The distances derived from the relative 

disparity between the horizon and laser line are depicted as the increasingly darkening 

colors. It is noted that introducing walking motion to this behavior results in a more 

random sets of distance distributions  than if scanning the walls without motion. 
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Figure 23: Sensor Readings Without Walk 

 

 

Figure 24: Sensor Readings While Walking 

 Another factor affecting the accuracy of sensor readings is head motion.  The 

motors of the robot are constantly updating their state (every 32 ms), hence the joints are 

never fully motionless.  This affects accuracy of manipulating image data using elements 

of the AIBO’s world state.   For example, commanding the AIBO to pan it’s head from 

left to right, but telling it not to nod/tilt its head, will not result in nod and tilt elements of 

the world state remaining in their neutral angles, 0° and 30° respectively. While 

monitoring the updates of the world state, slight fluctuations ( ± ~0.213°) of these 
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settings are noticed.  This preempts any assumption that the control input is truly 

duplicated by the robot, one obstacle to performing accurate active triangulation.   This 

technique relies on geometric relationships whose consistency cannot be guaranteed, 

eliminating it as a viable option for determining distance.  Figures 25 and 26 show the 

distance distributions when detecting a wall directly in front of the AIBO with and 

without panning head motion.  

 

Figure 25: Sensor Readings of a Wall without Head Motion 

    

 

Figure 26: Sensor Readings with Pan Motion 

Finally, the environment setting plays a crucial role in the ability to extract the 

information necessary to accurately describe the locations of features in its image.  For 
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most applications, the overriding concern is lighting.  Proper lighting is crucial to 

“seeing” those objects in the robot’s environment to extract particular features or 

dimensions.  In this application, incorporating the Class 1 laser introduces a new facet to 

the lighting issue.  To detect this laser, the darker the environment reflecting the laser, the 

more pronounced the laser appears in the image.  Especially since the detection relies of 

segmenting the color of the beam from the image.  In Figure 27, the left column is the 

original image and the right column shows the extracted line.  This is an example of the  

    

Figure 27: Laser Lines in Different Lighting 

increasing brightness of an image reducing the accuracy of the extracted line.  When 

testing the impact of lighting on laser line extraction, over 75% of the images fell into the 

to darker ranges when navigating the mazes (see Figure 28 ).  This is primarily due to the 

proximity of the maze walls/obstacles to the camera when the laser line becomes visible, 

because as the robot moves closer to the maze walls/obstacles, more light filters out of 

the images. 
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Figure 28: Hallway Maze, (left) Top View, (right) robot's view 

4.2 Pose Model 

 The accuracy of the motion model doesn’t necessarily suffer from the same noisy 

factors that the sensor model does.  The error of the pose is due in part to the assumptions 

made during development of the model and in part, the method of data collection upon 

which the model is based.  For example, the assumption that the robot has a forward 

velocity of 100 mm/sec for all pose calculations may be erroneous. As the angular 

velocity is varied, the robot is no longer traveling “forward” at that set speed.  The model 

developed in this research performs well when programmed with a constant control input, 

which makes sense since a constant motion control was used during data collection for 

the model.  Performance deteriorates when the control input is not as smooth, most of 

them occurring when the robot was driven by remote control.  Generally, this means that 

if the robot is told to perform a continuous 2° turn to the right, and no other control 

variations are introduced, the robot’s pose tracks more accurately.  In contrast, if the 

robot is reactively driven remotely, the resulting pose shows much more noise in its 

tracking.  The figures below provide a sample of pose derivations in both situations. 
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Figure 29: Continuity of Control: Left Turn Pose Tracking. (Left) Actual plotted pose data, (Right) 
Mapped pose data 

 

 

Figure 30: Continuity of Control: Right Turn Pose Tracking.  (Left) Actual plotted data, (Right) 
Mapped pose data 

The error of each small distance traveled is accumulated as the (x,y) coordinates are 

accumulated when mapping the pose, shown in Figure 31. 
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Figure 31: Accumulated Pose (x,y) Error 

4.3 Mapping 

 The process of mapping involves the collaboration of the pose and sensor data to 

formally create a map of the environment as the robot navigates its environment.  The 

plausible error of this map is an extension of the noise found in each of the models 

described in previous sections.  To test the accuracy of the sensor and motion models, 2 

environments were physically designed (see Figure 32), while 2 were simulated.  The two 

mazes through which the robot was navigated were characteristic of the data collection 

methods described in Chapter 3, only requiring the controller to make small adjustments 

to the angular velocity setting.   
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Figure 32: AIBO Mazes 

 

 The noise described for the pose model propagates to the map as drift.  In the tests 

run in the straight hallway, the drift is always toward the robot’s right.  This drift first 

appeared in data collection, illustrated in Figure 33 and exists when the robot controls the 

movement.  When manually driven, the drift can be compensated out of the map, but this 

introduces pose error as discussed in section 4.2 .  The following maps are test runs 

through the straight hallway seen above in Figure 32.  The large versions of the map are 

at a 1cm granularity, meaning each grid contains 1 cm of real world space. The smaller 

versions are at 5cm grid size.  Each map suffers from gaps in sensor readings.  The two 

contributing factors for the gaps are head pan speed and navigation technique.  In all 

cases, the head doesn’t pan fast enough to capture images of wall segments directly 

opposite each other, the images are staggered from left to right.  For the remote 

controlled navigation, there are larger gaps in the sensor readings because the robot is 

swerving from left to right as it is controlled through the maze.  The maps for the 

simulated mazes look cleaner because the walls maintain a constant distance from the 
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robot, so the only contributing factor is the panning speed of the head.  The shape of the 

sensor scans is slanted because the laser reflects a diagonal line on the walls when not 

looking at the wall head-on, as in Figures 26 and 27.    

 

Figure 33: Remote Controlled Navigation Through Hallway Maze, Trial 1 

 

Figure 34: Remote Controlled Navigation Through Hallway Maze, Trial 2 

 The maps shown in Figures 33 and 34 are the result of manually navigating the 

AIBO through the physical hallway shown in Figure 32.  To illustrate the contrast 

between the sensor data gathered without the noise-induced walk and sensor data shown 

in the figures above, the same tests are executed in a simulated hallway without walking 

(but tests are shown in Figure 35 and 36. 
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Figure 35: Programmed Navigation Through Simulated Hallway Maze, Trial 1 

 

Figure 36: Programmed Navigation Through Simulated Hallway Maze, Trial 2 

 The simulated mazes were hallways with slow gradient curves to the right and to 

the left. These tests revealed a shortfall of the sensor data collection.  If the robot’s head 

was turned toward the wall it was turning towards, the opposites side of the hall is 

sometimes missed entirely.  It is also dependent on the skill of the controller driving the 

robot.  The more smoothly the robot maintains heading, the more distinct the sensor 
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scans. The next set of tests was performed in a simulated maze requiring the robot to 

make small turns to the left or to the right.  

 

Figure 37: Simulated Maze with Small Left Turn 

 

Figure 38: Simulated Maze with Small Right Turn 
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 The final aspect of the pose calculation and sensor data representation tested with 

the Mapping system is a circular maze.  Since each test of the pose demonstrated the 

ability of the client software to accurately derive the pose, despite small discrepancies in 

the sensor data, it is presumed that the maze traversal contains accurate pose information, 

but the sensor readings will overlap and be quite noisy.  It is proposed that the some of 

the inaccuracy in the pose stems from inconsistencies in the panning of the head.  It was 

observed that the head didn’t always pan completely to the right, as well as sometimes 

containing a noticeable jerk when the head reached the maximum pan angle.  In such 

cases, the robot was rebooted and the tests were duplicated.  The following figures 

include three test sets.  The first map set is the pose estimations (without sensor data) for 

a continuous right and left turn.   

 

Figure 39: Continuous Turn Pose Estimations: (Left) Left Turn, (Right) Right Turn 

 
Figure 40: Simulated Round Maze:  Off The Ground 
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Figure 41: Single Run Through Maze 

 
Figure 42: Three Runs Through Maze 

4.5 Conclusion 

 The tests performed in this chapter support the plausibility that distance can be 

determined by projecting a laser into the image frame.  Progress is impeded by hardware 

and robot complexity, but there exists promise in fine tuning the methods described in 

this research for vastly improving the accuracy of both models.  Suggested alternative 

methods to improve the development of the motion and sensor models are discussed in 

Chapter 5.  
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V. Future Work and Conclusions 

This chapter discusses a variety of modifications to this research that would 

improve the results of the localization computations and also provides conclusions based 

on this research. 

5.1 Estimation and Assumption Alternatives 

  The accuracy of the sensor and motion models is dependent on establishing 

configurations of the vision and motion systems that reduce the number of estimations 

and assumptions made to reduce complexity of calculations.  

 5.1.1 Horizon Estimate 

 One critical estimate made in developing the sensor model concerns deriving the 

position of the horizon in the image. Using the location of 91.44 cm in space in reference 

to the base frame to determine the location of the horizon is a sound method, but not 

effective with the current walk.  Unfortunately, the robot’s walk doesn’t involve all four 

feet, resembling more of a crawl by supporting itself on its rear feet and slightly below 

the knee joint on the front legs.  Therefore, since the locations of the points used to create 

the ground plane are based on the translation vectors of the feet in reference to the base 

frame, the resulting plane tends to be inaccurate.  Modifying these vectors involves 

measuring the distance between the knee joint and the point of the leg that contacts the 

ground and adjusting the translation vectors of the front legs.  This in itself isn’t a perfect 

solution, since the contact point of the front leg changes as the leg rotates.  An alternative 

approach is to design a unique walk, exhibiting characteristics that are easier to measure.  

In doing so, you have a deeper understanding of the body rotations impacting the position 
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of the horizon.  Future implications of designing a unique walk are reducing of the 

number of assumptions and estimations necessary to develop an accurate motion model. 

Assumptions are also made when determining the point of intersection of the 

ground plane (represented by a vector) and the image plane.  This requires the calculation 

of the real world points of intersection and their location in the image. A projection 

results in a 3D point being by identified by a 2D coordinate.  Unfortunately, there isn’t an 

exact science in determining the number of mm each pixel covers; hence this estimation 

introduces a percentage of error into the calculations.  We are confined to using the fields 

of view and resolution to calculate the projection.  In future extension, it would behoove 

us to perform a precise extrinsic and intrinsic calibration of the camera to provide more 

accurate measurements of image features. 

5.1.2 Sensor Model  

 Of the two models developed in this research, the sensor model has the fewest 

parameters and is the most flexibility in describing how to determine the distance to 

obstacles in the robot’s environment.  The distance is derived from the pixel distance 

between the horizon line and laser line in the segmented image.  Although calculating the 

pixel distance between these two lines is a precise integer operation, the translation of 

pixels into real-world measures (mm) isn’t as deterministic.  Without the previously 

mentioned camera calibration, this projection calculation requires some educated guess 

work.  In addition to calibrating the camera to increase distance accuracy, using active 

triangulation to derive the distance to the robot is a more robust method than that used in 

this research.  In our method it is noted that for distances exceeding 40 cm between the 

robot and obstacle, 4-5 consecutive world distances share the same recorded pixel 
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distance.  Additionally, the average pixel distance used as a reference for each distance, 

since each distance has inconsistent relative pixel distances. The resulting disparities are 

recorded in the table found in Appendix C.  Since the distance accuracy is dependent on 

precision in positioning of the horizon, an alternative is to investigate all factors that 

affect the position of the horizon in the image and establish a camera/laser configuration 

more conducive to active triangulation. As mentioned before, horizon position factors 

include stabilizing joint positions of the legs and head and extracting precise kinematic 

states of the walk, then compensating for these deviations in determining where the 

horizon appears in the image.  Increasing the known information about the kinematics of 

the robot will propagate throughout the sensor model.  Angle accuracy and stability are 

directly reflected in determining the geometric relationship between the robot’s center, 

the sensor, and the obstacle, further improving the robot’s knowledge of where an 

obstacle is relative to its pose. 

 Estimations in this research are not restricted to developing the sensor model.  

The most complex model developed in this research is the motion model.  The relative 

error increased when  

5.1.3 Motion Model   

Presently, there isn’t an established technique for developing an accurate motion model 

for the AIBO.  Due to the 54 parameters involved in analyzing the AIBO’s walk, 

assumptions are made to reduce the complexity of the motion model and the unknowns 

outside the scope of this project.  The manners in which the characteristics of the walk 

are gathered have implications for future work.  In generating the motion model, we 

assume a static forward velocity (100 mm/sec).  With this set, the controller input only 
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provides changes in angular velocity to maneuver the robot through the maze.  This 

assumption constrains the motions of the robot in implementation as well as the type of 

environment navigated. For example, since the test was restricted to smaller turn 

radiuses, the motion model does not accurately determine its pose in an environment 

comprised of 90° turns. In future extensions, expanding the tested motion sets 

representing a broader spectrum of navigated environments should better represent the 

robots navigational capabilities. Additionally, since the robot isn’t capable of reporting its 

estimated pose, this is determined it empirically by gathering information about the walk.  

This process involves testing the results of the controller inputs which drive the robot 

straight with/without turning. Compiling the resulting location (x, y,θ ) information 

provides us an estimate of pose given a control input.  The distribution ( θΔΔΔ ,, yx ) of 

these locations is used as the motion model for localization. Although the test set relies on 

a set forward velocity, the impact of changes in angular velocity on the actual forward 

velocity is not addressed, another parameter for future investigation. 

5.2 Future Extensions 

Suggestions for extension of this research are two-fold.  First, the camera’s poor-

resolution restricts the environment to navigate.  Without the presence of “good” lighting 

and distinct patterns in the environment, extracting lines and other features is extremely 

difficult and inconsistent.  For this project, poor resolution restricts the local map to 

within 67.056 square cm of the robot and requires an increasing number of local maps to 

build a global map of the robot’s physical environment. 
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 The possibility of augmenting the robot with a better camera is nonexistent since 

the ability to access hardware by the robot is limited to what is already on board.  The 

AIBO doesn’t support external sensors being incorporated into its system configuration. 

The final extension of this research is to transition to real-time mapping, 

eliminating the bottleneck created by writing to a file.  The theoretical concept of 

research such as this is to be able to use the data processed from the images while 

navigating, hence reading and writing files is not conducive to the “big picture” 

implementation of such concepts.    

5.3 Conclusions 

 This goal of this research was development of the sensor and motion models 

necessary for SLAM to build a map and self localize, using vision as the primary sensor.  

Although the resulting models weren’t as successful as hoped, it provided insight into 

previously unidentified factors that must be considered when selecting a robot platform 

for mapping and localization, specifically head and body motion, image granularity, 

camera resolution, and accelerometer accuracy. 

   The theory behind using the relationship between the horizon of the image and 

the laser line to determine the distance between the robot and an object in its path is 

supported as plausible by this research.  The resulting distances did not achieve the 

expected accuracy, not due to faulty theory, but due to the nature of the robot used, the 

poor resolution of the camera installed in the robot, and the scope of the project.  

Implementing some of the alternatives described above may lead to more precise models 

for use in SLAM software.  Additionally, the lessons learned in this research provide 
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insight into the impact of kinematic motion on images, key to future success in 

implementing the same methodology on the new Wheg robot platform. 
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Appendix A 

################################################################## 
######################   Tekkotsu config   ####################### 
################################################################## 
####################### $Revision: 1.5 $ ######################## 
################## $Date: 2005/06/07 00:57:38 $ ################## 
################################################################## 
################################################################# 
 
################################################################## 
################################################################## 
[Wireless] 
################################################################## 
################################################################## 
# unique id for Aibo (not used by Tekkotsu, but you might want it...) 
id=1 
 
################################################################## 
################################################################## 
[Vision] 
################################################################## 
################################################################## 
 
# white_balance  indoor | flourescent | outdoor 
<ERS-2*> 
white_balance=flourescent 
</ERS-2*> 
<ERS-7> 
white_balance=indoor 
</ERS-7> 
 
# gain           low | mid | high 
# higher gain will brighten the image, but increases noise 
gain=high 
 
# shutter_speed  slow | mid | fast 
# slower shutter will brighten image, but increases motion blur 
<ERS-2*> 
shutter_speed=mid 
</ERS-2*> 
<ERS-7> 
shutter_speed=slow 
</ERS-7> 
 
# resolution     quarter | half | full 
# this is the resolution vision's object recognition system will run at 
resolution=full 
 
 
### Color Segmentation Threshold files ### 
# Threshold (.tm) files define the mapping from full color to indexed color 
# You can uncomment more than one of these - they will be loaded into 
# separate channels of the segmenter.  The only cost of loading more 
# threshold files is memory - the CPU cost of actual segmenting is 
# only done when the channel is accessed. 
 
# Included options for color threshold file: 
<ERS-2*> 
# phb.tm - pink, skin (hand), and blue 
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#   note: "skin" is just of people who work in our lab - not a general sampling... :( 
# general.tm - general colors, previously 'default' 
# ball.tm - standard Sony pink ball definition 
# pb.tm - pink and blue 
#thresh=config/phb.tm 
#thresh=config/general.tm 
#thresh=config/ball.tm 
#thresh=config/pb.tm 
thresh=config/ttt.tm 
</ERS-2*> 
<ERS-7> 
# 7red.tm - just your usual pink/red/purple color detection, nothing too fancy 
# ball.tm - standard Sony pink ball definition 
thresh=config/7red.tm 
thresh=config/ball.tm 
</ERS-7> 
 
# the .col file gives names and a "typical" color for display 
# the indexes numbers it contains correspond to indexes in the .tm file 
#colors=config/default.col 
colors=config/ttt.col 
 
 
### Image Streaming Format ### 
# These parameters control the video stream over wireless ethernet 
# transport can be either 'udp' or 'tcp' 
rawcam_port=10011 
rawcam_transport=udp 
rle_port=10012 
rle_transport=udp 
 
# pause between raw image grabs: 0 for fast-as-possible, 100 for 10 FPS, etc 
# in milliseconds 
rle_interval=0 
 
# rawcam_encoding   color | y_only | uv_only | u_only | v_only | y_dx_only | y_dy_only | y_dxdy_only 
rawcam_encoding=color 
 
# compression       none | jpeg 
rawcam_compression=jpeg 
 
# quality of jpeg compression 0-100 
rawcam_compress_quality=85 
 
# pause between raw image grabs: 0 for fast-as-possible, 100 for 10 FPS 
# in milliseconds 
rawcam_interval=0 
 
# apparently someone at sony thinks it's a good idea to replace some 
# pixels in each camera image with information like the frame number 
# and CDT count.  if non-zero, will replace those pixels with the 
# actual image pixel value in RawCamGenerator 
restore_image=1 
 
# jpeg algorithm: 'islow' (integer, slow, but quality), 'ifast' (integer, fast, but rough), 'float' (floating point) 
jpeg_dct_method=ifast 
 
# log_2 of number of pixels to skip, 0 sends reconstructed double 
#   resolution (mainly useful for Y channel, others are just resampled) 
#   our eyes are more sensitive to intensity (y channel) so you might 
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#   want to send the UV channels at a lower resolution (higher skip) as 
#   a form of compression 
# rawcam_y_skip is used when in sending single channel, regardless of 
#   which channel 
# valid values are 0-5 
rawcam_y_skip=2 
rawcam_uv_skip=3 
 
# you can send the original segmented image 
# or an RLE compressed version (which includes some noise removal) 
#rlecam_compression   none | rle 
rlecam_compression=rle 
 
# this is the channel of the seg cam which should be sent. 
# corresponds to the index of the .tm file you want in thresh 
rlecam_channel=0 
 
# this is the log_2 of pixels to skip when sending RLE encoded 
# segmented camera images, same idea as rawcam_*_skip 
rlecam_skip=1 
 
 
### Camera Calibration ### 
# see Config::vision_config::{computeRay,computePixel} to convert 
# between world coordinates and pixel coordinates using these values 
   
# focal length (in pixels) 
focal_len_x = 198.807 
focal_len_y = 200.333 
   
# center of optical projection (in pixels) 
principle_point_x = 102.689 
principle_point_y = 85.0399 
   
# skew of CCD 
skew = 0 
   
# Radial distortion terms 
kc1_r2 = -0.147005 
kc2_r4 = 0.38485 
kc5_r6 = 0 
   
# Tangential distortion terms 
kc3_tan1 = -0.00347777 
kc4_tan2 = 0.00012873 
 
# resolution at which calibration images were taken 
calibration_res_x = 208 
calibration_res_y = 160 
 
 
################################################################## 
################################################################## 
[Main] 
################################################################## 
################################################################## 
console_port=10001 
stderr_port=10002 
error_level=0 
debug_level=0 
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verbose_level=0 
wsjoints_port=10031 
wspids_port=10032 
walkControl_port=10050 
aibo3d_port=10051 
headControl_port=10052 
estopControl_port=10053 
stewart_port=10055 
wmmonitor_port=10061 
use_VT100=true 
# pause between writes: 0 for fast-as-possible, 100 for 10 FPS, etc. 
# in milliseconds 
worldState_interval=0 
 
 
################################################################## 
################################################################## 
[Behaviors] 
################################################################## 
################################################################## 
 
### FlashIPAddrBehavior ### 
 
# You probably already know the first 3 bytes for your network 
# so you might only want the last byte for brevity 
# (valid values are 1 through 4) 
flash_bytes=4 
 
# Do you want to automatically trigger this on boot? 
# Will use a priority of kEmergencyPriority+1 in order to override 
# the emergency stop's status animation 
flash_on_start=0 
 
# your-stuff-here? 
 
################################################################## 
################################################################## 
[Controller] 
################################################################## 
################################################################## 
gui_port=10020 
select_snd=whiip.wav 
next_snd=toc.wav 
prev_snd=tick.wav 
read_snd=ping.wav 
cancel_snd=whoop.wav 
error_snd=fart.wav 
 
################################################################## 
################################################################## 
[Motion] 
################################################################## 
################################################################## 
 
# Any motion related paths which are not absolute (i.e. do not 
# start with '/') will be assumed to be relative to this directory 
root=data/motion 
 
# This is the default set of walk parameters 
walk=walk.prm 
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# The file specified by "kinematics" should define the kinematic 
# chains which form your robot. 
# "kinematic_chains" lists the names of the chains which should be 
# loaded from that file 
<ERS-2*> 
<ERS-210> 
kinematics=/config/ers210.kin 
kinematic_chains=Body 
kinematic_chains=Mouth 
</ERS-210> 
<ERS-220> 
kinematics=/config/ers220.kin 
kinematic_chains=Body 
</ERS-220> 
kinematic_chains=IR 
</ERS-2*> 
<ERS-7> 
kinematics=/config/ers7.kin 
kinematic_chains=Body 
kinematic_chains=Mouth 
kinematic_chains=NearIR 
kinematic_chains=FarIR 
kinematic_chains=ChestIR 
</ERS-7> 
kinematic_chains=LFr 
kinematic_chains=RFr 
kinematic_chains=LBk 
kinematic_chains=RBk 
kinematic_chains=Camera 
 
# These calibration parameters should specify the value to multiply a 
# desired position by in order to cause the joint to actually reach 
# that position.  This is then used both to calibrate joint values 
# which are sent to the system, and also sensor values which are 
# received back. 
# An unspecified joint is by default '1' which will then pass values 
# through unmodified.  Only PID joints are calibrated (i.e. LEDs and 
# ears are not) 
<ERS-7> 
#Only the knees and rotors have been calibrated 
#This is just kind of a rough calibration since 
#I don't know how well it will generalize across 
#individual robots anyway. 
calibrate:LFr:rotor=0.972 
calibrate:LFr:knee~=0.944 
calibrate:RFr:rotor=0.972 
calibrate:RFr:knee~=0.944 
calibrate:LBk:rotor=0.972 
calibrate:LBk:knee~=0.944 
calibrate:RBk:rotor=0.972 
calibrate:RBk:knee~=0.944 
</ERS-7> 
<ERS-2*> 
#ERS-2xx seems to be fairly well calibrated by system, but 
#you can always try to do better... 
</ERS-2*> 
 
# Sounds to play when turning estop on and off 
estop_on_snd=skid.wav 
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estop_off_snd=yap.wav 
 
# These values are used by some behaviors to limit the 
# speed of the head to reduce wear on the joints 
# Units: radians per second 
<ERS-2*> 
max_head_tilt_speed=2.1 
max_head_pan_speed=3.0 
max_head_roll_speed=3.0 
</ERS-2*> 
<ERS-7> 
#the pan speed is revised down from Sony's maximum a bit 
max_head_tilt_speed=3.18522588 
max_head_pan_speed=5.78140315 
max_head_roll_speed=5.78140315 
</ERS-7> 
 
# If non-zero, robot should attempt to change directions instantaniously 
# If zero, robot should change directions more fluidly (following some internal acceleration calibration) 
inf_walk_accel=0 
 
console_port=10003 
stderr_port=10004 
 
################################################################## 
################################################################## 
[Sound] 
################################################################## 
################################################################## 
root=data/sound 
# volume = mute | level_1 | level_2 | level_3 | <direct dB setting: 0x8000 - 0xFFFF> 
# if you directly set the decibel level, be warned sony recommends against going above 0xF600 
# However, I believe the commercial software on the ERS-7 runs at 0xFF00 
# going above 0xF800 on a ERS-210 causes distortion (clipping) - full volume on a ERS-7 sounds fine 
though. 
volume=level_3 
 
# Sound playback currently requires all sounds to be the same bit 
# rate.  Aperios further requires only either 8bit/8KHz or 16bit/16KHz 
# formats 
sample_rate=16000 
sample_bits=16 
 
# Preload is a list of sounds to cache at boot 
# can be either root relative or full path 
preload=skid.wav 
preload=yap.wav 
 
# Audio streaming settings 
# Audio from the AIBO's microphones 
streaming.mic_port=10070 
streaming.mic_sample_rate=16000 
streaming.mic_bits=16 
streaming.mic_stereo=true 
 
# Audio to the AIBO's speakers 
streaming.speaker_port=10071 
# Length of the speaker streaming buffer (ms) 
# Streamed samples are sent to the sound manager in packets of this length 
streaming.speaker_frame_length=64 
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# Maximum delay (ms) during playback of received samples 
# If the playback queue gets longer it is emptied. 
streaming.speaker_max_delay=1000 
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Appendix B 

 

AIBO Motion Model 

y x theta             
0.000 0.000 0.000             

1 Meter             
-

112.713 966.788 
-

0.174             

-50.800 949.325 
-

0.017             
-

146.050 958.850 
-

0.017             

-79.375 946.150 
-

0.122             
-

112.713 966.788 
-

0.174             
-

114.300 952.500 
-

0.140             
-

120.650 928.688 
-

0.157             
-

138.113 1003.300 
-

0.157             
-

146.050 958.850 
-

0.017             
-

153.988 906.780 
-

0.140             
-

157.163 966.788 
-

0.174             
-

168.275 962.025 
-

0.192             
-

153.988 906.780 
-

0.140 AVERAGE STDEV 
-

120.650 928.688 
-

0.157 
-

126.773 950.164 
-

0.127 32.396 25.800 0.062 
.5 Meter             

-31.750 423.863 
-

0.140             

-38.100 409.575 
-

0.140             

-34.925 384.175 
-

0.157             

-39.688 381.000 
-

0.192 AVERAGE STDEV 

-45.720 412.750 
-

0.192 -38.037 402.273 
-

0.164 5.267 18.770 0.026 
.25 Meter             

-6.350 255.588 
-

0.157             

-12.700 265.113 
-

0.209             

-14.288 258.128 
-

0.105             

-15.875 270.828 
-

0.140             

-16.828 269.875 
-

0.174 AVERAGE STDEV 
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-19.050 263.525 
-

0.157 -14.182 263.843 
-

0.157 4.407 6.127 0.035 

.175 Meter             

-6.350 107.950 
-

0.035             
7.938 103.188 0.017             
6.350 98.425 0.052             

17.463 96.838 0.070 AVERAGE STDEV 
9.525 90.488 0.105 6.509 97.102 0.052 7.774 8.121 0.054 
4.128 85.725 0.105             

.0875 Meter             
-1.588 52.388 0.000             
1.588 50.800 0.052             
9.525 47.625 0.209             
6.350 46.355 0.174 AVERAGE STDEV 

-1.588 44.450 0.000 2.858 48.324 0.087 4.944 3.241 0.099 
1 Meter             

-
263.525 850.900 

-
0.523             

-
287.338 896.963 

-
0.506             

-
300.038 857.250 

-
0.541             

-
314.325 874.078 

-
0.593             

-
320.675 876.300 

-
0.576             

-
320.675 909.638 

-
0.576             

-
323.850 903.288 

-
0.541             

-
323.850 882.650 

-
0.576             

-
327.025 890.588 

-
0.506             

-
334.963 884.238 

-
0.628             

-
336.550 847.725 

-
0.558             

-
347.663 863.600 

-
0.593             

-
350.838 887.413 

-
0.628             

-
350.838 879.475 

-
0.611 AVERAGE STDEV 

-
374.650 862.013 

-
0.680 

-
325.120 877.741 

-
0.576 27.419 18.654 0.049 

.5 Meter             

-44.450 385.763 
-

0.366             

-53.975 419.100 
-

0.366             

-57.150 412.750 
-

0.279             

-50.800 390.525 
-

0.331             

-44.450 400.050 
-

0.384 AVERAGE STDEV 

-41.275 382.588 
-

0.297 -48.683 398.463 
-

0.337 6.243 14.892 0.042 
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.25 Meter             

-11.113 283.528 
-

0.401             

-15.875 283.528 
-

0.401             

-16.828 287.338 
-

0.349             

-16.828 277.813 
-

0.454             

-23.813 276.225 
-

0.314 AVERAGE STDEV 

-36.513 276.225 
-

0.419 -20.161 280.776 
-

0.390 8.980 4.656 0.050 
1 Meter             

-
501.650 809.625 

-
0.837             

-
504.825 823.913 

-
0.802             

-
506.413 809.625 

-
0.837             

-
509.588 804.863 

-
0.907             

-
511.175 800.100 

-
0.872             

-
512.763 790.575 

-
0.890             

-
519.113 809.625 

-
0.959             

-
525.463 811.213 

-
1.012             

-
533.400 820.738 

-
0.907             

-
544.513 795.338 

-
0.942             

-
547.688 766.763 

-
1.134             

-
557.213 781.050 

-
0.942             

-
558.800 768.350 

-
0.977             

-
565.150 766.763 

-
0.977 AVERAGE STDEV 

-
574.675 755.650 

-
0.942 

-
531.495 794.279 

-
0.929 24.646 21.689 0.082 

.5 Meter             
-

101.600 400.050 
-

0.558             

-85.725 385.128 
-

0.593             

-93.028 397.828 
-

0.576             
-

122.873 385.128 
-

0.558             

-53.975 372.428 
-

0.628 AVERAGE STDEV 
-

101.600 371.513 
-

0.645 -93.133 385.346 
-

0.593 22.874 12.086 0.037 
1 Meter             

-
584.200 666.750 

-
1.169             

-
596.900 677.863 

-
1.012             

-
596.900 720.725 

-
1.151             
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-
609.600 703.263 

-
1.134             

-
614.363 706.438 

-
1.116             

-
615.950 666.750 

-
1.116             

-
622.300 698.500 

-
1.204             

-
627.063 649.288 

-
1.116             

-
636.588 649.288 

-
1.116             

-
641.350 700.088 

-
1.099             

-
644.525 703.263 

-
1.221             

-
644.525 717.550 

-
1.186             

-
647.700 655.638 

-
1.204             

-
649.288 706.438 

-
1.029             

-
654.050 688.975 

-
1.064 AVERAGE STDEV 

-
663.575 639.763 

-
1.099 

-
628.055 684.411 

-
1.127 23.294 26.481 0.061 

.5Meter             

-92.075 365.125 
-

0.733             

-61.913 396.875 
-

0.663             

-85.725 366.713 
-

0.680             

-66.675 365.125 
-

0.558 AVERAGE STDEV 

-79.375 368.300 
-

0.768 -77.153 372.428 
-

0.680 12.680 13.730 0.080 
1 Meter             

-
601.663 596.900 

-
2.250             

-
609.600 603.250 

-
1.587             

-
615.950 596.900 

-
1.465             

-
622.300 593.725 

-
1.430             

-
639.763 573.088 

-
1.570             

-
644.525 600.075 

-
2.181             

-
644.525 546.100 

-
1.692             

-
647.700 588.963 

-
2.146             

-
651.510 550.863 

-
2.111             

-
657.225 555.625 

-
2.250             

-
666.750 549.275 

-
2.163             

-
671.513 547.688 

-
2.146             

-
673.100 542.925 

-
2.111             

- 558.800 - AVERAGE STDEV 
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709.613 2.058 
-

711.200 584.200 
-

2.181 
-

651.129 572.558 
-

1.956 32.378 23.026 0.307 
.5 Meter             

-38.100 434.975 
-

0.994             

-57.150 446.088 
-

0.611             
-74.549 409.575 0.733             

-49.213 409.575 
-

0.558 AVERAGE STDEV 

-29.528 425.450 
-

0.436 -49.708 425.133 
-

0.373 17.426 15.970 0.653 
1 Meter             

-15.875 1028.700 
-

0.017             

-20.638 1028.700 
-

0.021             

-22.860 975.360 
-

0.021             

-49.022 1054.100 
-

0.052             

-57.150 1041.400 
-

0.066             

-65.088 1054.100 
-

0.070             

-77.788 1016.000 
-

0.085             

-92.075 1028.700 
-

0.096             

-98.425 1000.125 
-

0.105 AVERAGE STDEV 
-

101.600 1008.063 
-

0.105 -60.052 1023.525 
-

0.064 32.630 24.569 0.035 
.5 Meter             

-41.275 481.013 
-

0.122             

-31.750 485.775 
-

0.052             

-39.688 492.125 
-

0.105             

-38.100 493.103 
-

0.140             

-47.625 496.888 
-

0.070             

-23.813 496.888 
-

0.035             

-31.750 501.650 
-

0.122             

-22.225 508.000 
-

0.017             

-31.750 514.350 
-

0.035             

-22.225 492.125 
-

0.017             

-12.700 496.888 
-

0.017 AVERAGE STDEV 

-14.288 498.475 
-

0.035 -29.766 496.440 
-

0.064 10.918 8.977 0.046 
.25 Meter             

-20.638 238.125 
-

0.087             

-15.875 238.125 
-

0.070             
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-14.288 242.888 
-

0.105             

-20.638 244.475 
-

0.140             

-16.828 245.428 
-

0.035             
-9.525 244.475 0.017             

-12.700 238.125 
-

0.087             

-79.375 239.078 
-

0.105             

-11.113 242.888 
-

0.017 AVERAGE STDEV 

-12.700 250.825 0.000 -21.368 242.443 
-

0.063 20.716 4.151 0.051 
.175 Meter             

-6.350 123.825 
-

0.070             

-6.350 117.475 
-

0.052             

-1.588 115.888 
-

0.052             

-10.478 130.175 
-

0.087             

-4.128 127.000 
-

0.035             

-9.525 123.825 
-

0.052             

-12.700 117.475 
-

0.105             

-9.525 115.888 
-

0.122             

-6.350 115.888 
-

0.035             

-7.938 112.078 
-

0.070             

-3.175 112.078 
-

0.052 AVERAGE STDEV 

-9.525 111.125 
-

0.105 -7.303 118.560 
-

0.070 3.260 6.214 0.029 
.0875 Meter             

-4.128 44.450 
-

0.052             

-1.588 49.213 
-

0.122             

-4.128 50.800 
-

0.087             

-1.588 53.975 
-

0.070             

-3.175 57.150 
-

0.052             

-6.350 52.388 
-

0.017             

-3.175 53.975 
-

0.035             

-4.128 59.373 
-

0.070             

-3.175 60.325 
-

0.052             

-7.938 66.675 
-

0.122             

-6.350 69.850 
-

0.070             

-3.175 71.438 
-

0.017 AVERAGE STDEV 
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-1.588 73.025 
-

0.017 -3.883 58.664 
-

0.060 1.971 9.133 0.035 

.04375 Meter             
0.000 15.875 0.000             

-2.540 19.050 
-

0.017             

-1.588 20.638 
-

0.035             

0.000 25.400 
-

0.017             

-1.588 28.575 
-

0.105             

-1.588 33.338 
-

0.087             

0.000 34.925 
-

0.052             

-3.175 28.575 
-

0.140 AVERAGE STDEV 

-3.175 31.750 
-

0.122 -1.517 26.458 
-

0.064 1.297 6.688 0.051 
1 Meter             

152.400 987.425 0.192             
152.400 987.425 0.192             
203.200 957.263 0.314             
111.125 946.150 0.087             
127.000 981.075 0.105             
138.113 982.663 0.140             
152.400 987.425 0.192             
169.863 933.450 0.244             
203.200 957.263 0.314             
169.863 933.450 0.244 AVERAGE STDEV 
127.000 981.075 0.105 155.142 966.788 0.193 29.810 21.836 0.080 

.5 Meter             
20.638 461.328 0.070             

0.000 431.800 0.035             
3.175 403.225 0.122             

25.400 442.913 0.087 AVERAGE STDEV 
7.938 406.400 0.087 11.430 429.133 0.080 11.078 24.604 0.032 

.25 Meter             
29.528 283.528 0.384             
28.575 285.750 0.314             
20.638 273.050 0.262             
15.875 269.875 0.244             
20.638 283.528 0.297 AVERAGE STDEV 

7.938 282.575 0.227 20.532 279.718 0.288 8.074 6.556 0.057 
.175 Meter             

-16.828 111.125 
-

0.070             

-19.050 101.600 
-

0.157             

-6.350 96.838 
-

0.035             
-4.128 92.075 0.000             

-3.175 88.900 
-

0.052 AVERAGE STDEV 
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-9.525 80.963 
-

0.070 -9.843 95.250 
-

0.064 6.678 10.482 0.053 

.0875 Meter             

-6.350 52.388 
-

0.087             

-12.700 50.800 
-

0.140             

-6.350 49.213 
-

0.087             

-9.525 47.625 
-

0.122 AVERAGE STDEV 

-3.175 46.038 
-

0.035 -7.620 49.213 
-

0.094 3.620 2.510 0.040 
1 Meter             

227.013 917.575 0.209             
284.163 907.256 0.331             
212.725 919.163 0.279             
220.663 939.800 0.331             
187.325 904.875 0.227             
195.263 901.700 0.279             
196.850 903.288 0.209             
212.725 919.163 0.279             
219.075 939.800 0.279             
220.663 939.800 0.331             
212.725 919.163 0.279             
227.013 917.575 0.209             
241.300 915.988 0.279             
254.000 931.863 0.349             
227.013 917.575 0.209 AVERAGE STDEV 
284.163 907.256 0.331 226.417 918.865 0.276 27.938 12.910 0.050 

.5 Meter             
34.925 419.100 0.192             
39.688 384.175 0.349             
69.850 414.338 0.262             
54.928 396.875 0.262 AVERAGE STDEV 
25.400 396.875 0.227 44.958 402.273 0.258 17.535 14.270 0.058 

.25 Meter             
7.938 257.175 0.314             
7.938 274.638 0.384             
9.525 276.225 0.401             

15.875 277.813 0.436             
6.350 279.400 0.454 AVERAGE STDEV 
3.175 269.875 0.366 8.467 272.521 0.393 4.220 8.198 0.050 

1 Meter             
292.100 927.100 0.454             
298.450 915.988 0.523             
298.450 903.288 0.523             
301.625 901.700 0.471             
307.975 906.463 0.523             
307.975 895.350 0.576             
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319.088 952.500 0.576             

333.375 946.150 0.611             
341.313 895.350 0.558             
360.680 908.050 0.628             
301.625 901.700 0.471             
390.525 887.413 0.663             
292.100 927.100 0.611             
319.088 956.628 0.576             
301.625 941.388 0.471             
360.680 908.050 0.628 AVERAGE STDEV 
319.088 965.200 0.576 320.339 919.966 0.555 28.179 24.231 0.064 

.5 Meter             
61.913 450.850 0.488             
65.088 474.028 0.558             
54.928 461.328 0.454             
54.928 435.928 0.454 AVERAGE STDEV 
57.150 469.900 0.541 58.801 458.407 0.499 4.526 15.387 0.049 

1 Meter             
384.175 812.800 0.977             
412.750 817.563 0.890             
417.513 817.563 1.151             
428.625 819.150 0.977             
430.213 790.575 0.994             
434.975 821.055 1.064             
434.975 800.100 0.977             
439.738 774.700 0.977             
439.738 809.625 1.029             
444.500 790.575 1.012             
447.675 803.275 0.925             
469.900 777.875 0.994             
428.625 819.150 0.977             
434.975 800.100 0.977 AVERAGE STDEV 
500.063 741.363 1.116 436.563 799.698 1.002 25.633 22.047 0.067 

.5 Meter             
80.328 515.938 0.523             
82.550 492.125 0.611             
95.250 476.250 0.541             
90.488 503.238 0.488 AVERAGE STDEV 
71.438 485.775 0.558 84.011 494.665 0.544 9.247 15.416 0.045 

1 Meter             
488.950 708.025 1.221             
520.700 681.038 1.343             
501.650 677.863 1.326             
508.000 665.163 1.326             
519.113 668.338 1.308             
520.700 681.038 1.343             
525.463 690.563 1.343             
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539.750 660.400 1.396             

549.275 644.525 1.413             
550.863 661.988 1.361             
561.975 650.875 1.378             
563.563 668.338 1.291             
563.563 631.825 1.378             
568.325 650.875 1.396             
577.850 639.763 1.413 AVERAGE STDEV 
582.613 628.650 1.448 540.147 663.079 1.355 28.684 21.687 0.055 

.5 Meter             
101.600 495.300 0.698             
105.728 479.425 0.663             
114.300 469.900 0.680             
100.013 465.138 0.698 AVERAGE STDEV 

84.138 469.900 0.663 101.156 475.933 0.680 11.009 12.006 0.017 
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Appendix C 

Sensor Model 

Mm pixels  pixels  pixels  pixels  pixels  pixels  pixels  pixels  AVERAGE STD DEV 

250.000 1.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 0.500 
0.5345 

260.000 1.000 4.000 2.000 3.000 2.000 1.000 3.000 4.000 2.500 
1.1952 

270.000 4.000 4.000 5.000 4.000 5.000 4.000 4.000 4.000 4.250 
0.4629 

280.000 7.000 6.000 6.000 5.000 8.000 7.000 5.000 6.000 6.250 
1.0351 

290.000 9.000 10.000 8.000 9.000 8.000 9.000 9.000 10.000 9.000 
0.7559 

304.800 9.000 9.000 10.000 12.000 11.000 9.000 12.000 9.000 10.125 
1.3562 

314.800 12.000 10.000 11.000 11.000 13.000 12.000 11.000 10.000 11.250 
1.0351 

324.800 14.000 15.000 14.000 12.000 13.000 14.000 12.000 15.000 13.625 
1.1877 

334.800 15.000 14.000 14.000 16.000 14.000 15.000 16.000 14.000 14.750 
0.8864 

344.800 16.000 15.000 16.000 16.000 17.000 16.000 16.000 15.000 15.875 
0.6409 

354.800 17.000 16.000 18.000 17.000 19.000 17.000 17.000 16.000 17.125 
0.9910 

364.800 16.000 17.000 18.000 17.000 18.000 16.000 17.000 17.000 17.000 
0.7559 

374.800 18.000 18.000 19.000 19.000 18.000 18.000 19.000 18.000 18.375 
0.5175 

384.800 20.000 18.000 21.000 19.000 19.000 20.000 19.000 18.000 19.250 
1.0351 

394.800 20.000 19.000 20.000 20.000 20.000 20.000 20.000 19.000 19.750 
0.4629 

404.800 20.000 21.000 20.000 21.000 20.000 20.000 21.000 21.000 20.500 
0.5345 

414.800 21.000 22.000 20.000 22.000 21.000 21.000 22.000 22.000 21.375 
0.7440 

424.800 22.000 22.000 22.000 22.000 21.000 22.000 22.000 22.000 21.875 
0.3536 

434.800 22.000 22.000 22.000 22.000 21.000 22.000 22.000 22.000 21.875 
0.3536 

444.800 23.000 22.000 22.000 23.000 22.000 23.000 23.000 22.000 22.500 
0.5345 

454.800 23.000 23.000 22.000 23.000 21.000 23.000 23.000 23.000 22.625 
0.7440 

464.800 23.000 22.000 22.000 21.000 22.000 23.000 21.000 22.000 22.000 
0.7559 

474.800 24.000 23.000 22.000 23.000 22.000 24.000 23.000 23.000 23.000 
0.7559 

484.800 24.000 23.000 24.000 23.000 23.000 24.000 23.000 23.000 23.375 
0.5175 

494.800 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 
0.0000 

504.800 24.000 25.000 24.000 23.000 23.000 24.000 23.000 25.000 23.875 
0.8345 

514.800 24.000 25.000 25.000 25.000 24.000 24.000 25.000 25.000 24.625 
0.5175 

524.800 25.000 25.000 24.000 25.000 24.000 25.000 25.000 25.000 24.750 
0.4629 

534.800 25.000 24.000 24.000 25.000 25.000 25.000 25.000 24.000 24.625 
0.5175 
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544.800 25.000 25.000 25.000 25.000 23.000 25.000 25.000 25.000 24.750 
0.7071 

554.800 25.000 25.000 25.000 26.000 25.000 25.000 26.000 25.000 25.250 
0.4629 

564.800 26.000 24.000 26.000 25.000 26.000 26.000 25.000 24.000 25.250 
0.8864 

574.800 26.000 25.000 26.000 25.000 26.000 26.000 25.000 25.000 25.500 
0.5345 

584.800 26.000 26.000 27.000 26.000 26.000 26.000 26.000 26.000 26.125 
0.3536 

594.800 27.000 26.000 27.000 26.000 25.000 27.000 26.000 26.000 26.250 
0.7071 

609.600 27.000 27.000 25.000 26.000 26.000 27.000 26.000 27.000 26.375 
0.7440 



 

101 

Bibliography 
 

1. Bach, J. and M. J’ungel. “Using pattern matching on a flexible, horizon-aligned grid 
for robotic vision”. Concurrency, Specification and Programming - CSP’2002, 
1:11–19, 2002. 

 
2. Carnegie Mellon University Tekkostu Project. “About AIBO Programming”.  URL 

http://www.cs.cmu.edu/~tekkotsu/AiboInfo.html. 
 
3. Chen, H., E. Glassman, C. Liao, Y. Martin, L. Shank and J. Stahlman. "AIBO 

Motion and Vision Algorithms", 2005. URL http://www-
2.cs.cmu.edu/~tekkotsu/media/pgss_2003_paper.doc. 

 
4. Cornall, T.  “A Low Computation Method to Determine Horizon Angle from 

Video”.  Department of Electrical and Computer Systems Engineering Technical 
Report, MECSE-4-2004. 

 
5. David C., K. Yuen and B. MacDonald. “An evaluation of sequential monte carlo 

technique for simultaneous localization and map-building”.IEEE International 
Conference on Robotics and Automation 2003, Taipei, 2003. 

 
6. Dubrawski, A. and B. Siemiatkowska.  “A Method for Tracking Pose of a Mobile 

Robot Equipped with a Scanner Laser Range Finder”.  Proceedings of the 1998 
IEEE International Conference on Robotics & Automation, Leuven, Belgium, May 
1998. 

 
7. Fox D., W. Burgard, and S. Thrun. “Markov localization for mobile robots in 

dynamic environments”. Journal of Artificial Intelligence Research, 11:391–427, 
1999. 

 
8. Fujita, M. and K. Kageyama. “An open architecture for robot entertainment”. 

Proceedings of the First international Conference on Autonomous Agents (Marina 
del Rey, California, United States, February 05 - 08, 1997). AGENTS '97. ACM 
Press, New York, NY, 435-442.  

 
9. Guttmann, J.-S. and D. Fox. “An experimental comparison of localization methods 

continued”. Proceedings of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS’02), 2002. 

 
10. Intel.  “Open Source Computer Vision Library”.  URL 

http://www.intel.com/technology/computing/opencv/index.htm. 
 
11. J¨ungel, M., J. Hoffmann, and M. L¨otzsch, “A real-time auto-adjusting vision 

system for robotic soccer,” in 7th International Workshop on RoboCup 2003 (Robot 

http://www.cs.cmu.edu/~tekkotsu/AiboInfo.html
http://www-2.cs.cmu.edu/~tekkotsu/media/pgss_2003_paper.doc
http://www-2.cs.cmu.edu/~tekkotsu/media/pgss_2003_paper.doc
http://www.intel.com/technology/computing/opencv/index.htm


 

102 

World Cup Soccer Games and Conferences), Lecture Notes in Artificial 
Intelligence, (Padova, Italy), Springer, 2004. 

 
12. J’ungel, M., Hoffmann and J. Lotzsch.  A Vision Based System for Goal-Directed 

Obstacle Avoidance used in RC’03 Obstacle Avoidance Challenge“.  Robocup 
WorldCup VIII, Lecture Notes in Artificial Intelligence,  Springer 2005. 

 
13. Knight,J., A. Zisserman and I. Reid.  “Linear Auto-Calibration for Ground Plane 

Motion”. Proc IEEE Conf on Computer Vision and Pattern Recognition, Madison, 
Wisconsin, June 16 - 22 2003. 

 
14. Martin,F., R. Gonzalez-Careaga, P. Barrera, J. Canas and V. Matellan.  “Vision 

Based Localization for a Legged Robot”.  URL 
http://gsyc.escet.urjc.es/~fmartin/archivos/locali.pdf 

 
15. MacMahan, W. and J. Bunting. “Puppy Vision Enhancement: Proposed 

Enhancements to NUbot 2002 Vision System”.  URL 
http://murray.newcastle.edu.au/users/students/2002/c3012299/enhance.html. 

 
16. Maybeck, P.  Stochastic models, estimation, and control  Volume 1. New York: 

Academic Press, 1979. 
 
17. Mertz, C.; J. Kozar, J.R. Miller and C. Thorpe. “Eye-safe laser line striper for 

outside use”, Intelligent Vehicle Symposium, 2002. IEEE , Volume 2 , 17-21 June 
2002. pp. 507 - 512 vol.2. 

 
18. Negenborn, R..  “Kalman Localization and Kalman Filters on  Finding Your 

Position in a Noisy World”, chapter 7, pp. 91-107, 2003. 
 
19. Neira, J., D. Ortin and J.M.M. Montiel. “Relocation using laser and vision”. 

Proceedings of the IEEE International Conference on Robotics and Automation, 
2004. 

  
20. Neira, J., J. Tardos, P. Newman and J. Leonard. “Robust Mapping and Localization 

in Indoor Environments using Sonar Data”. The International Journal of Robotics 
Research, 2002. 

 
21. Rofer, T. and M. Jungel, “Fast and robust edge-based localization in the Sony four-

legged robot league,”  7th International Workshop on RoboCup 2003, Lecture 
Notes in Artificial  Intelligence, (Padova, Italy), Springer, 2004. 

 
22. Rybski, R..  “Mobile Robot Localization and Mapping using the Kalman Filter”.   

URL http://www.csu.cmu.edu/~robosoccer/cmrobobits/lectures/kalman.ppt. 
 

http://gsyc.escet.urjc.es/~fmartin/archivos/locali.pdf
http://murray.newcastle.edu.au/users/students/2002/c3012299/enhance.html
http://www.csu.cmu.edu/~robosoccer/cmrobobits/lectures/kalman.ppt


 

103 

23. Shachtman, N. “The Baghdad Bomb Squad”. Wired Magazine, Issue 13.11, 
November 2005. 

 
24. Sridharan, M., G. Kuhlmann, and P. Stone. “Practical vision-based     Monte carlo 

localization on a legged robot”.The International Conference on Robotics and 
Automation, 2005. 

 
25. Thrun, S. (2002). “Particle filters in robotics”. Proceedings of the 17th Annual 

 Conference on Uncertainty in AI (UAI). 
 
26. Thrun, S. “Robotic Mapping: A Survey,”Exploring Artificial Intelligence in the 

NewMillennium, G. Lakemeyer and B. Nevel, eds., Morgan Kaufmann, 2002. 
 
27. Thrun, S., Dellaert, F., Burgard, W. and Fox, D.  “Monte Carlo Localization form 

Mobile Robots”.  Artificial Intelligence Journal, 2001. 
 
28. Thrun, S, D. Fox, W. Burgard and F. Dellaert, “Robust Monte Carlo localization for 

mobile robots”. Artif. Intell. J. 128 (2001) (1–2), pp. 99–141.  
 
29. Turner, S. “Implementing Segmented Vision Using Tekkotsu”.  Robotics Seminar, 

2003. URL http://www.ils.albany.edu/robotics/SegmentedVisionInTekkotsu.doc. 
 
30. Vail, D. and M. Veloso. “Learning from accelerometer data on a legged robot”.  

IFAC Symposium on Intelligent Autonomous Vehicles (IAV), 2004. 
 
31. Veloso, M., E. Winner, S. Lenser, J. Bruce and T. Balch. “Vision-servoed  

Localization and behavior-based planning for an autonomous quadruped legged 
robot”. In Proceeding of AIPS-00. 2000. 

 
32. Wikipedia Foundation.  “Bresenham’s line algorithm”.  Sept 2004 URL 

http://en.wikipedia.org/wiki/Bresenham’s_line_algorithm. 
 
33. Wikipedia Foundation.  “Hough Transfrom”.  September 2004. URL 

http://en.wikipedia.org/wiki/Hough_Transform. 
 
34. Wikipedia Foundation.  “YUV”. September 2004. URL 

http://wikipedia.org/wiki/YUV. 
 
35. Yoon,J.,  J. Lee and E. Kang.  “ Simultaneous Intrinsic and Extrinsic Calibration of 

Hand Mounted Laser Range Finder“. Proceedings of the Ninth IASTED 
International Conference, September 12-14, 2005, Benidorm, Spain. 

 
36. Yuen, D. and B. MacDonald. “Vision-Based Localization Algorithm Based on 

Landmark Matching, Triangulation, Reconstruction, and Comparision”, IEEE 
Transactions on Robotics, vol. 21, no. 2, April 2005. 

http://www.ils.albany.edu/robotics/SegmentedVisionInTekkotsu.doc
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
http://en.wikipedia.org/wiki/Hough_Transform
http://wikipedia.org/wiki/YUV


 

104 

 
37. ZunZun. “Interactive 2-Dimensional and 3-Dimensional Data Modeling”. URL 

http://zunzun.com. 

http://zunzun.com/


 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this 
burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington 
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-
YYYY) 

23-06-2006 

2. REPORT TYPE  
Master’s Thesis  

3. DATES COVERED (From – To) 
August 2004 – March 2006 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
ROBOT LOCALIZATION USING VISUAL IMAGE 
MAPPING 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Crews, Carrie, First Lieutenant, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GCS/ENG/06-03 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
SNRP 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
AFRL/SNRP 
Attn: Dr. Michael Miller 
2241 Avionics Circle 
WPAFB OH 45433                     785-6127 ext.4274 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT  
   One critical step in providing the Air Force the capability to explore unknown environments is 
for an autonomous agent to be able to determine its location.  The calculation of the robot’s pose is an 
optimization problem making use of the robot’s internal navigation sensors and data fusion of range sensor 
readings to find the most likely pose.  This data fusion process requires the simultaneous generation of a 
map which the autonomous vehicle can then use to avoid obstacles, communicate with other agents in the 
same environment, and locate targets.  Our solution entails mounting a Class 1 laser to an ERS-7 AIBO.  
The laser projects a horizontal line on obstacles in the AIBO camera’s field of view.  Range readings are 
determined by capturing and processing multiple image frames, resolving the laser line to the horizon, and 
extract distance information to each obstacle.  This range data is then used in conjunction with mapping an 
localization software to accurately navigate the AIBO. 
  
15. SUBJECT TERMS 
     Localization, mapping, AIBO, robot, image processing, distance, laser. 

16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. Gilbert Peterson, AFIT/ENG 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. 
THIS 
PAGE 

 
U 

17. LIMITATION 
OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

117 
19b.  TELEPHONE NUMBER (Include 
area code) 
(937) 255-3636, ext 4281 
(gilbert.peterson@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 



 

 

 


	AIR FORCE INSTITUTE OF TECHNOLOGY
	 
	Table of Contents
	 
	List of Figures
	 ROBOT LOCALIZATION USING VISUAL IMAGE MAPPING
	I. Introduction
	1.1 Rationale
	1.2 Problem Statement
	1.3 Approach
	1.4 Thesis Outline

	,II. Literature Review
	2.1 Localization
	2.2 Localization Algorithms
	 2.2.1 Kalman Filter  
	 2.2.2 Markov Model
	 2.2.3 Monte Carlo Localization 
	 2.2.2 AIBO Specific Localization Implementations  
	  2.2.2.1 Landmark-Based Localization
	 2.2.2.2 Edge Based Localization


	2.3 Striping Laser and Camera Implementations
	2.4 Simultaneous Localization and Mapping (SLAM)
	2.5 Summary

	 III. Methodology
	3.1 Overview
	3.2 The AIBO
	3.2 Capturing Images
	 3.2.1 Raw Image 
	  3.2.2 Segmented Image 

	3.4 Extracting Laser Line
	3.5 Estimating Horizon Line
	3.5 Determining Distance
	 3.5.1 Sensor Model  

	3.6 Determining Pose
	3.8 Localization
	3.9 Summary

	IV. Results and Analysis
	4.1 Sensor Model
	4.2 Pose Model
	4.3 Mapping
	4.5 Conclusion

	V. Future Work and Conclusions
	5.1 Estimation and Assumption Alternatives
	 5.1.1 Horizon Estimate
	5.1.2 Sensor Model 
	5.1.3 Motion Model  

	5.2 Future Extensions
	5.3 Conclusions

	 Appendix A
	Appendix B
	Appendix C



